

December 4, 2018

• Engineering

Remediation

RE: PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

• Consulting

THE BARN AT LAKE ANNA 2800 LEWISTON RD **BUMPASS, VIRGINIA** 

Environmental Alliance, Inc. (Alliance) is pleased to present the findings of the recent Phase II Environmental Site Assessment (Phase II) for the property located at 2800 Lewiston Rd Bumpass, Virginia (the Site).

### **Background**

Alliance completed a Phase I Environmental Site Assessment for the above-reference Site. The Phase I report was submitted on October 24, 2018, and identified the following recognized environmental condition (REC) in connection with the Site:

The Site has historically operated as a gasoline fill-up station. One out-of-service 12,000-gallon underground storage tank (UST) system is currently installed at the Site, including associated piping and one dispenser island. The UST was installed in March of 1997. Virginia DEQ records indicate three former gasoline USTs were in use at the Site from April 1982 through March 1997, which were removed in March 1997. Current and historical use as a gas station represent RECs for the Site.

Based on the result of the Phase I, Alliance recommended completion of a Phase II to assess whether a release had occurred at the Site resulting from operation of the Site as a gasoline fillup station. The Phase II work plan consisted of the installation of five soil borings surrounding the Site UST system for the collection of soil and groundwater samples.

#### **Subsurface Investigation Activities**

On November 9, 2018, a subsurface investigation was conducted at the Site consisting of six soil borings (SB01, SB01A, SB02, SB03, SB04, SB05), four of which (SB01A, SB02, SB04, and SB05) were advanced for the collection of soil and groundwater samples, using a direct push drill rig. Soil boring SB01 was relocated due to refusal of the original location by gravel fill material. Soil boring SB03 was not completed due to refusal of the original location by gravel fill material and was not relocated due to underground utility concerns in the area. Drilling activities were conducted under the supervision of an Alliance geologist. Soil borings were logged continuously by an Alliance geologist for grain size, texture, color, and for indications of petroleum impact such as odor or staining. Soil borings were advanced to a maximum depth of 20 feet below ground surface (bgs), as determined by the depth of drill rod refusal.

Soils were screened using a photo-ionization detector (PID) calibrated to 100-part per million by volume (ppm-v) isobutylene to evaluate the presence (if any) of volatile organic compounds (VOCs) and to aid in selecting soil samples. PID readings were non-detect (0.0 ppm-v) across four of the six borings (SB01, SB01A, SB02, and SB03), and PID detections were recorded in two borings (SB04 and SB05). The highest PID reading for SB04 was 1.0 ppm-v, and the highest PID reading for SB05 was 7.0 ppm-v. The lithology of each soil boring is outlined on the soil boring logs included in **Attachment I**, and the soil boring locations are included on the Sample Location Map as **Figure 1**.

Soil samples were collected from the four completed soil borings (SB01A, SB02, SB04, and SB05). Samples were selected for analysis from either the interval of the highest PID reading, or directly above the groundwater table interface if no PID readings were detected. If no PID readings or groundwater were detected, the soil samples were collected from the boring completion depth. Groundwater was not encountered in any of the Site soil borings. Soil samples were placed in an iced cooler and submitted to Eurofins Lancaster Laboratories (Eurofins) of Lancaster, Pennsylvania under Chain of Custody protocols for analysis of volatile organic compounds (VOCs) in accordance with EPA Method 8260 and lead in accordance with EPA Method 6010.

Laboratory analysis indicated that gasoline constituent toluene was detected from the soil samples from each boring at a maximum concentration of 0.002 milligrams per kilogram



(mg/kg) in soil boring SB05. Toluene was also detected within the laboratory-supplied trip blank at a concentration of 0.002 mg/kg, indicating potential sample contamination from the laboratory. Potential leaded gasoline constituent lead was also detected in each soil boring at a maximum concentration of 39.7 mg/kg in SB02. Gasoline constituents methyl tert-butyl ether (MTBE, 0.13 mg/kg) and xylenes (0.001 mg/kg) were detected in the soil sample collected from boring SB05. Acetone, 2-butanone, and methyl acetate were detected in Site soil samples. However, these analytes are not typically associated with gasoline and are considered frequent laboratory contaminants and so they are not considered representative of gasoline-impacted soils at the Site. Soil analytical results are summarized in **Table 1** and the laboratory analytical report is presented in **Attachment II**.

Upon completion of the boreholes, a single one-inch diameter temporary monitoring well was set within the SB05 boring. The temporary monitoring well was set to the boring completion depth of approximately 20-feet and was constructed with 15 feet of 1-inch slotted PVC well screen and 5 feet of 1-inch schedule-40 PVC riser. Groundwater did not collect within the temporary monitoring well, so no groundwater sample was collected.

#### **Conclusions**

The locations of the soil borings/temporary monitoring wells were strategically placed around the Site to evaluate the RECs identified in the October 2018 Phase I.

The soil screening and analytical results from the Phase II subsurface investigation activities indicate that low concentrations of gasoline constituents were detected in each of the four soil boring samples. However, detection of toluene in the laboratory-supplied trip blank indicate that these observed detections may be the result of sample contamination at the laboratory. The detections of lead are within the expected background concentration range for Virginia, and so do not themselves indicate a release of leaded gasoline at the Site (<a href="https://www.epa.gov/superfund/usgs-background-soil-lead-survey-state-data#VA">https://www.epa.gov/superfund/usgs-background-soil-lead-survey-state-data#VA</a>). The detection of MTBE in soil boring SB05 does indicate historic gasoline impact prior to the phase-out of MTBE in gasoline in the mid-2000s. However, the detection of MTBE in only a single boring, the relatively low concentration, and lack of other associated gasoline constituents (e.g., benzene and ethylbenzene), indicate that the release is limited in extent and not indicative of an ongoing release.

Based on the soil analytical detections described above, Alliance recommended that the results be reported to the Virginia Department of Environmental Quality (VADEQ) in accordance with



the VADEQ Petroleum Program reporting requirements. This report was completed by the Site owner, and Alliance provided additional information at VADEQ's request on November 28, 2018.

Should you have any questions or comments, please contact the undersigned at 877-234-1141.

Sincerely,

ENVIRONMENTAL ALLIANCE, INC.

Aaron Siegel, P.G. Project Manager Joshua J. White Staff Geologist

**ATTACHMENTS:** 

Figure 1: Sample Location Map, November 9, 2018

 Table 1:
 Soil Analytical Results Summary

**Attachment I:** Soil Boring Logs

**Attachment II:** Laboratory Analytical Report



# Table 1 Soil Analytical Results Summary The Barn at Lake Anna 2800 Lewiston Road Bumpass, Virginia

| Location ID | Sample Date | Depth (ft) | PID (ppm- | Constituents of Concern (mg/kg) |            |                |          |          |                |      |  |
|-------------|-------------|------------|-----------|---------------------------------|------------|----------------|----------|----------|----------------|------|--|
|             | Sample Date |            | v)        | Acetone                         | 2-Butanone | Methyl Acetate | MTBE     | Toluene  | Xylene (Total) | Lead |  |
| SB01A       | 11/09/08    | 18         | 0.0       | < 0.007                         | < 0.001    | < 0.001        | < 0.0005 | 0.0005 J | < 0.001        | 11.6 |  |
| SB02        | 11/09/18    | 13         | 0.0       | 0.011 J                         | < 0.001    | 0.001 J        | < 0.0006 | 0.0008 J | < 0.001        | 39.7 |  |
| SB04        | 11/09/18    | 10.5       | 1.0       | 0.006 J                         | < 0.0009   | < 0.0009       | < 0.0004 | 0.0003 J | < 0.0008       | 17.3 |  |
| SB05        | 11/09/18    | 9.5        | 7.0       | 0.032                           | 0.004 J    | < 0.001        | 0.130    | 0.002 J  | 0.001 J        | 29.2 |  |
| Trip Blank  |             |            |           | < 0.006                         | < 0.001    | < 0.001        | < 0.0005 | 0.002 J  | < 0.0009       |      |  |

ft = feet

mg/kg = milligrams per kilogram

< = analyte not detected at or above the specified laboratory detection limit

Volatile organic compound (VOC) analysis conducted in accordance with SW8260B

J = Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

Results formatted in **bold** indicate laboratory detections

MTBE = Methyl tert-butyl Ether



### ATTACHMENT I

SOIL BORING LOGS



### Log of Boring: SB01

**Date Started:** 11/9/18 **Project Code:** 4642

Date Completed:11/9/18Project Name:Lake Anna Gas StationTotal Depth (ft):1.5Drilled By:Environmental Alliance Inc.

Boring Diameter (in): 2.25 Logged By: J. White
Bedrock Depth (ft): N/A Drill Rig: Hand Auger
Elevation (ft-amsl): N/A Drill Method: Hand Auger

**Permit Number:** N/A **Sampling Method:** Grab

| Depth (ft)                                                                                           | Sample Number | Sample Interval | Recovery (Inches) | PID               | Lithological<br>Description       | Interpreted<br>Lithology | Comments                          |
|------------------------------------------------------------------------------------------------------|---------------|-----------------|-------------------|-------------------|-----------------------------------|--------------------------|-----------------------------------|
| 0-<br>-<br>2-<br>-<br>4-<br>-<br>8-<br>-<br>10-<br>-<br>12-<br>-<br>14-<br>-<br>16-<br>-<br>18-<br>- | S             | S.              |                   | 0.0<br>0.0<br>0.0 | ASPHALT CL: Brown silty CLAY/fill |                          | - Refusal at 1.5-ft (gravel fill) |

### Log of Boring: SB01A



**Date Started:** 11/9/18 **Project Code:** 4642

**Date Completed:** 11/9/18 **Project Name:** Lake Anna Gas Station

Total Depth (ft):18.0Drilled By:Ground ZeroBoring Diameter (in):2.25Logged By:J. White

Bedrock Depth (ft): N/A Drill Rig: Geoprobe 7822 DT

| Depth (ft)                                                           | Sample Number | Sample Interval | Recovery<br>(Inches) | PID                                                                | Lithological<br>Description                                         | Interpreted | Comments                                                                                                  |
|----------------------------------------------------------------------|---------------|-----------------|----------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|
| 0-<br>2-<br>4-<br>6-<br>8-<br>10-<br>12-<br>14-<br>16-<br>18-<br>20- | 2             |                 | 50<br>52             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | CL: Reddish-brown silty CLAY  CL: Reddish-brown CLAY with saprolite |             | - Collected grab soil sample at 18-ft. bgs for laboratory analysis - Refusal at 18-ft (weathered bedrock) |



**Date Started:** 11/9/18 **Project Code:** 4642

**Date Completed:** 11/9/18 **Project Name:** Lake Anna Gas Station

Total Depth (ft): 13.0 Drilled By: Ground Zero Boring Diameter (in): 2.25 Logged By: J. White

Bedrock Depth (ft): N/A Drill Rig: Geoprobe 7822 DT

| Depth (ft)                                                                                                  | Sample Number | Sample Interval | Recovery<br>(Inches) | PID                                                                | Lithological<br>Description                          | Interpreted | Comments                                                                                                  |
|-------------------------------------------------------------------------------------------------------------|---------------|-----------------|----------------------|--------------------------------------------------------------------|------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|
| 0-<br>  2-<br>  4-<br>  6-<br>  8-<br>  10-<br>  12-<br>  -<br>  14-<br>  -<br>  16-<br>  -<br>  18-<br>  - | 2             |                 | 37                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | CL: Reddish-brown silty CLAY with saprolite at 13-ft |             | - Collected grab soil sample at 13-ft. bgs for laboratory analysis - Refusal at 13-ft (weathered bedrock) |

### Log of Boring: SB04

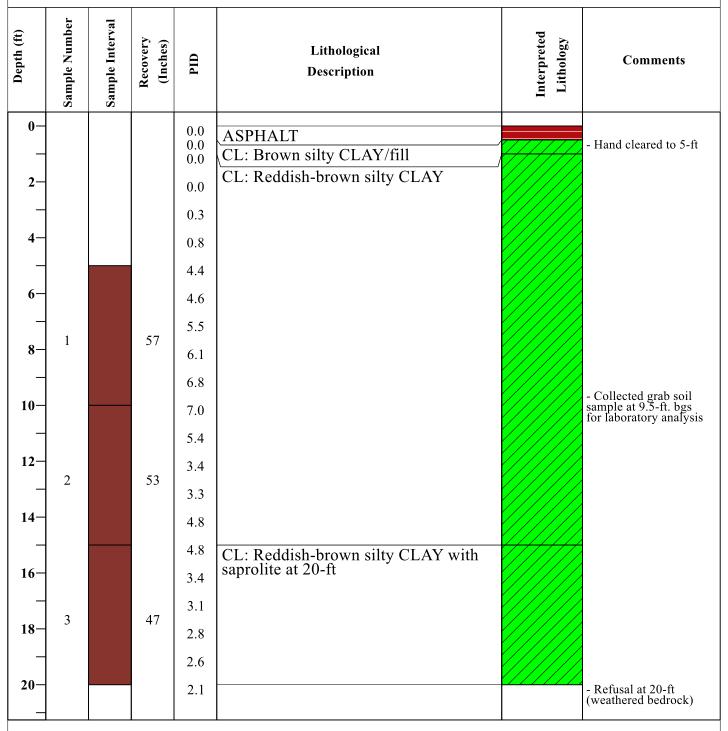
**Date Started:** 11/9/18 **Project Code:** 4642

**Date Completed:** 11/9/18 **Project Name:** Lake Anna Gas Station

Total Depth (ft): 19.5 Drilled By: Ground Zero Boring Diameter (in): 2.25 Logged By: J. White

Bedrock Depth (ft): N/A Drill Rig: Geoprobe 7822 DT

| Depth (ft)             | Sample Number | Sample Interval | Recovery (Inches) | PID                                    | Lithological<br>Description                                    | Interpreted | Comments                                                                   |
|------------------------|---------------|-----------------|-------------------|----------------------------------------|----------------------------------------------------------------|-------------|----------------------------------------------------------------------------|
| 0-<br>2-<br>-<br>4-    |               |                 |                   | 0.0<br>0.2<br>0.0<br>0.0               | ASPHALT CL: Brown silty CLAY/fill CL: Reddish-brown silty CLAY |             | - Hand cleared to 5-ft                                                     |
| 6-<br>8-<br>10-        | 1             |                 | 48                | 0.0<br>0.5<br>0.6<br>0.4<br>0.4        |                                                                |             |                                                                            |
| 12-<br>-<br>14-<br>-   | 2             |                 | 57                | 0.4<br>1.0<br>0.8<br>0.4<br>0.3<br>0.0 | CL: Reddish-brown silty CLAY with                              |             | - Collected grab soil<br>sample at 10.5-ft. bgs<br>for laboratory analysis |
| 16-<br>18-<br>-<br>20- | 3             |                 | 45                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | CL: Reddish-brown silty CLAY with saprolite at 19.5-ft         |             | - Refusal at 19.5-ft<br>(weathered bedrock)                                |


### Log of Boring: SB05

**Date Started:** 11/9/18 **Project Code:** 4642

**Date Completed:** 11/9/18 **Project Name:** Lake Anna Gas Station

Total Depth (ft):20.0Drilled By:Ground ZeroBoring Diameter (in):2.25Logged By:J. White

Bedrock Depth (ft): N/A Drill Rig: Geoprobe 7822 DT



### **ATTACHMENT II**

LABORATORY ANALYTICAL REPORT











#### **ANALYSIS REPORT**

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Environmental Alliance, Inc. 5341 Limestone Rd Wilmington DE 19808

Report Date: November 25, 2018 16:37

Project: 4642, VA

Account #: 07039 Group Number: 2008831 PO Number: 17524 State of Sample Origin: VA

Electronic Copy To Environmental Alliance, Inc. Electronic Copy To Environmental Alliance, Inc.

Attn: Data Administrator

Attn: Aaron Siegel

Respectfully Submitted,

Megan A. Moeller Senior Specialist

(717) 556-7261

To view our laboratory's current scopes of accreditation please go to <a href="http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/">http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</a>. Historical copies may be requested through your project manager.









#### **SAMPLE INFORMATION**

| Client Sample Description | Sample Collection | ELLE#   |
|---------------------------|-------------------|---------|
|                           | Date/Time         |         |
| SB01 Grab Soil            | 11/09/2018 11:15  | 9897098 |
| SB02 Grab Soil            | 11/09/2018 11:40  | 9897099 |
| SB04 Grab Soil            | 11/09/2018 10:35  | 9897100 |
| SB05 Grab Soil            | 11/09/2018 11:00  | 9897101 |
| MeOH                      | 11/09/2018        | 9897102 |

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SB01 Grab Soil

SB01A1801109181115 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018 11:15

Environmental Alliance, Inc.
ELLE Sample #: SW 9897098
ELLE Group #: 2008831

| CAT<br>No. | Analysis Name               | CAS Number | Dry<br>Result | Dry<br>Method<br>Detection Limit* | Dry<br>Limit of<br>Quantitation | Dilution<br>Factor |  |
|------------|-----------------------------|------------|---------------|-----------------------------------|---------------------------------|--------------------|--|
| GC/MS      | Volatiles SW-846            | 8260B      | mg/kg         | mg/kg                             | mg/kg                           |                    |  |
| 10237      | Acetone                     | 67-64-1    | N.D.          | 0.007                             | 0.022                           | 1                  |  |
| 10237      | Benzene                     | 71-43-2    | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | Bromodichloromethane        | 75-27-4    | N.D.          | 0.0003                            | 0.005                           | 1                  |  |
| 10237      | Bromoform                   | 75-25-2    | N.D.          | 0.004                             | 0.011                           | 1                  |  |
| 10237      | Bromomethane                | 74-83-9    | N.D.          | 0.0009                            | 0.005                           | 1                  |  |
| 10237      | 2-Butanone                  | 78-93-3    | N.D.          | 0.001                             | 0.011                           | 1                  |  |
| 10237      | Carbon Disulfide            | 75-15-0    | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | Carbon Tetrachloride        | 56-23-5    | N.D.          | 0.0005                            | 0.005                           | 1                  |  |
| 10237      | Chlorobenzene               | 108-90-7   | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | Chloroethane                | 75-00-3    | N.D.          | 0.002                             | 0.005                           | 1                  |  |
| 10237      | Chloroform                  | 67-66-3    | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | Chloromethane               | 74-87-3    | N.D.          | 0.0005                            | 0.005                           | 1                  |  |
| 10237      | Cyclohexane                 | 110-82-7   | N.D.          | 0.0005                            | 0.005                           | 1                  |  |
| 10237      | 1,2-Dibromo-3-chloropropane | 96-12-8    | N.D.          | 0.0003                            | 0.005                           | 1                  |  |
| 10237      | Dibromochloromethane        | 124-48-1   | N.D.          | 0.003                             | 0.009                           | 1                  |  |
| 10237      | 1,2-Dibromoethane           | 106-93-4   | N.D.          | 0.0003                            | 0.005                           | 1                  |  |
| 10237      | 1,2-Dichlorobenzene         | 95-50-1    | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | 1,3-Dichlorobenzene         | 541-73-1   | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | 1,4-Dichlorobenzene         | 106-46-7   | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | Dichlorodifluoromethane     | 75-71-8    | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | 1,1-Dichloroethane          | 75-34-3    | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | 1,2-Dichloroethane          | 107-06-2   | N.D.          | 0.0003                            | 0.005                           | 1                  |  |
| 10237      | 1,1-Dichloroethene          | 75-35-4    | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | cis-1,2-Dichloroethene      | 156-59-2   | N.D.          | 0.0005                            | 0.005                           | 1                  |  |
| 10237      | trans-1,2-Dichloroethene    | 156-60-5   | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | 1,2-Dichloropropane         | 78-87-5    | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | cis-1,3-Dichloropropene     | 10061-01-5 | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | trans-1,3-Dichloropropene   | 10061-02-6 | N.D.          | 0.0003                            | 0.005                           | 1                  |  |
| 10237      | Ethylbenzene                | 100-41-4   | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | Freon 113                   | 76-13-1    | N.D.          | 0.0004                            | 0.011                           | 1                  |  |
| 10237      | 2-Hexanone                  | 591-78-6   | N.D.          | 0.001                             | 0.011                           | 1                  |  |
| 10237      | Isopropylbenzene            | 98-82-8    | N.D.          | 0.0005                            | 0.005                           | 1                  |  |
| 10237      | Methyl Acetate              | 79-20-9    | N.D.          | 0.001                             | 0.005                           | 1                  |  |
| 10237      | Methyl Tertiary Butyl Ether | 1634-04-4  | N.D.          | 0.0005                            | 0.005                           | 1                  |  |
| 10237      | 4-Methyl-2-pentanone        | 108-10-1   | N.D.          | 0.001                             | 0.011                           | 1                  |  |
| 10237      | Methylcyclohexane           | 108-87-2   | N.D.          | 0.0007                            | 0.005                           | 1                  |  |
| 10237      | Methylene Chloride          | 75-09-2    | N.D.          | 0.001                             | 0.005                           | 1                  |  |
| 10237      | Styrene                     | 100-42-5   | N.D.          | 0.0004                            | 0.005                           | 1                  |  |
| 10237      | 1,1,2,2-Tetrachloroethane   | 79-34-5    | N.D.          | 0.0003                            | 0.005                           | 1                  |  |
| 10237      | Tetrachloroethene           | 127-18-4   | N.D.          | 0.0005                            | 0.005                           | 1                  |  |
| 10237      | Toluene                     | 108-88-3   | 0.0005 J      | 0.0003                            | 0.005                           | 1                  |  |
| 10237      | 1,2,4-Trichlorobenzene      | 120-82-1   | N.D.          | 0.0009                            | 0.005                           | 1                  |  |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SB01 Grab Soil

SB01A1801109181115 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018 11:15

Environmental Alliance, Inc.
ELLE Sample #: SW 9897098
ELLE Group #: 2008831

| CAT<br>No. | Analysis Name          | CAS Numb                                                              | Dry<br>er Result | Dry<br>Method<br>Detection Limit* | Dry<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|------------------------|-----------------------------------------------------------------------|------------------|-----------------------------------|---------------------------------|--------------------|
| GC/MS      | Volatiles              | SW-846 8260B                                                          | mg/kg            | mg/kg                             | mg/kg                           |                    |
| 10237      | 1,1,1-Trichloroethane  | 71-55-6                                                               | N.D.             | 0.0004                            | 0.005                           | 1                  |
| 10237      | 1,1,2-Trichloroethane  | 79-00-5                                                               | N.D.             | 0.0003                            | 0.005                           | 1                  |
| 10237      | Trichloroethene        | 79-01-6                                                               | N.D.             | 0.0004                            | 0.005                           | 1                  |
| 10237      | Trichlorofluoromethane | 75-69-4                                                               | N.D.             | 0.0007                            | 0.005                           | 1                  |
| 10237      | Vinyl Chloride         | 75-01-4                                                               | N.D.             | 0.0005                            | 0.005                           | 1                  |
| 10237      | Xylene (Total)         | 1330-20-7                                                             | N.D.             | 0.001                             | 0.005                           | 1                  |
| Metals     |                        | SW-846 6010B                                                          | mg/kg            | mg/kg                             | mg/kg                           |                    |
| 06955      | Lead                   | 7439-92-1                                                             | 11.6             | 0.557                             | 1.39                            | 1                  |
| Wet Ch     | emistry                | SM 2540 G-2011<br>%Moisture Calc                                      | %                | %                                 | %                               |                    |
| 00111      | Moisture               | n.a.                                                                  | 7.9              | 0.50                              | 0.50                            | 1                  |
|            |                        | oss in weight of the sample after<br>is. The moisture result reported |                  |                                   |                                 |                    |

|            | Laboratory Sample Analysis Record |                                  |        |              |                           |                    |                    |  |  |  |
|------------|-----------------------------------|----------------------------------|--------|--------------|---------------------------|--------------------|--------------------|--|--|--|
| CAT<br>No. | Analysis Name                     | Method                           | Trial# | Batch#       | Analysis<br>Date and Time | Analyst            | Dilution<br>Factor |  |  |  |
| 10237      | VOCs TCL (4.3) 8260 Soil          | SW-846 8260B                     | 1      | X183201AA    | 11/16/2018 10:42          | Jennifer K Howe    | 1                  |  |  |  |
| 07579      | GC/MS-5g Field<br>Preserv.MeOH-NC | SW-846 5035A                     | 1      | 201831751902 | 11/09/2018 11:15          | Client Supplied    | 1                  |  |  |  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A                     | 1      | 201831751902 | 11/09/2018 11:15          | Client Supplied    | 1                  |  |  |  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A                     | 2      | 201831751902 | 11/09/2018 11:15          | Client Supplied    | 1                  |  |  |  |
| 06955      | Lead                              | SW-846 6010B                     | 1      | 183180570801 | 11/17/2018 20:24          | Elaine F Stoltzfus | 1                  |  |  |  |
| 05708      | ICP-ICPMS - SW, 3050B - U3        | SW-846 3050B                     | 1      | 183180570801 | 11/16/2018 05:25          | Annamaria Kuhns    | 1                  |  |  |  |
| 00111      | Moisture                          | SM 2540 G-2011<br>%Moisture Calc | 1      | 18320820007B | 11/16/2018 15:44          | Larry E Bevins     | 1                  |  |  |  |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SB02 Grab Soil

SB021301109181140 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018 11:40 Environmental Alliance, Inc.
ELLE Sample #: SW 9897099
ELLE Group #: 2008831

| CAT<br>No. | Analysis Name               | CAS Number | Dry<br>Result | Dry<br>Method<br>Detection Limit* | Dry<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|-----------------------------|------------|---------------|-----------------------------------|---------------------------------|--------------------|
| GC/MS      | Volatiles SW-846            | 8260B      | mg/kg         | mg/kg                             | mg/kg                           |                    |
| 10237      | Acetone                     | 67-64-1    | 0.011 J       | 0.007                             | 0.023                           | 0.98               |
| 10237      | Benzene                     | 71-43-2    | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | Bromodichloromethane        | 75-27-4    | N.D.          | 0.0003                            | 0.006                           | 0.98               |
| 10237      | Bromoform                   | 75-25-2    | N.D.          | 0.005                             | 0.011                           | 0.98               |
| 10237      | Bromomethane                | 74-83-9    | N.D.          | 0.0009                            | 0.006                           | 0.98               |
| 10237      | 2-Butanone                  | 78-93-3    | N.D.          | 0.001                             | 0.011                           | 0.98               |
| 10237      | Carbon Disulfide            | 75-15-0    | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | Carbon Tetrachloride        | 56-23-5    | N.D.          | 0.0006                            | 0.006                           | 0.98               |
| 10237      | Chlorobenzene               | 108-90-7   | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | Chloroethane                | 75-00-3    | N.D.          | 0.002                             | 0.006                           | 0.98               |
| 10237      | Chloroform                  | 67-66-3    | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | Chloromethane               | 74-87-3    | N.D.          | 0.0006                            | 0.006                           | 0.98               |
| 10237      | Cyclohexane                 | 110-82-7   | N.D.          | 0.0006                            | 0.006                           | 0.98               |
| 10237      | 1,2-Dibromo-3-chloropropane | 96-12-8    | N.D.          | 0.0003                            | 0.006                           | 0.98               |
| 10237      | Dibromochloromethane        | 124-48-1   | N.D.          | 0.003                             | 0.009                           | 0.98               |
| 10237      | 1,2-Dibromoethane           | 106-93-4   | N.D.          | 0.0003                            | 0.006                           | 0.98               |
| 10237      | 1,2-Dichlorobenzene         | 95-50-1    | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | 1,3-Dichlorobenzene         | 541-73-1   | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | 1,4-Dichlorobenzene         | 106-46-7   | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | Dichlorodifluoromethane     | 75-71-8    | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | 1,1-Dichloroethane          | 75-34-3    | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | 1,2-Dichloroethane          | 107-06-2   | N.D.          | 0.0003                            | 0.006                           | 0.98               |
| 10237      | 1,1-Dichloroethene          | 75-35-4    | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | cis-1,2-Dichloroethene      | 156-59-2   | N.D.          | 0.0006                            | 0.006                           | 0.98               |
| 10237      | trans-1,2-Dichloroethene    | 156-60-5   | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | 1,2-Dichloropropane         | 78-87-5    | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | cis-1,3-Dichloropropene     | 10061-01-5 | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | trans-1,3-Dichloropropene   | 10061-02-6 | N.D.          | 0.0003                            | 0.006                           | 0.98               |
| 10237      | Ethylbenzene                | 100-41-4   | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | Freon 113                   | 76-13-1    | N.D.          | 0.0005                            | 0.011                           | 0.98               |
| 10237      | 2-Hexanone                  | 591-78-6   | N.D.          | 0.001                             | 0.011                           | 0.98               |
| 10237      | Isopropylbenzene            | 98-82-8    | N.D.          | 0.0006                            | 0.006                           | 0.98               |
| 10237      | Methyl Acetate              | 79-20-9    | 0.001 J       | 0.001                             | 0.006                           | 0.98               |
| 10237      | Methyl Tertiary Butyl Ether | 1634-04-4  | N.D.          | 0.0006                            | 0.006                           | 0.98               |
| 10237      | 4-Methyl-2-pentanone        | 108-10-1   | N.D.          | 0.001                             | 0.011                           | 0.98               |
| 10237      | Methylcyclohexane           | 108-87-2   | N.D.          | 0.0007                            | 0.006                           | 0.98               |
| 10237      | Methylene Chloride          | 75-09-2    | N.D.          | 0.001                             | 0.006                           | 0.98               |
| 10237      | Styrene                     | 100-42-5   | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | 1,1,2,2-Tetrachloroethane   | 79-34-5    | N.D.          | 0.0003                            | 0.006                           | 0.98               |
| 10237      | Tetrachloroethene           | 127-18-4   | N.D.          | 0.0006                            | 0.006                           | 0.98               |
| 10237      | Toluene                     | 108-88-3   | 0.0008 J      | 0.0003                            | 0.006                           | 0.98               |
| 10237      | 1,2,4-Trichlorobenzene      | 120-82-1   | N.D.          | 0.0009                            | 0.006                           | 0.98               |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SB02 Grab Soil

SB021301109181140 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018 11:40

Environmental Alliance, Inc.
ELLE Sample #: SW 9897099
ELLE Group #: 2008831

| CAT<br>No. | Analysis Name          | CAS Numbe                                                             | Dry<br>Result | Dry<br>Method<br>Detection Limit* | Dry<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|------------------------|-----------------------------------------------------------------------|---------------|-----------------------------------|---------------------------------|--------------------|
| GC/MS      | Volatiles              | SW-846 8260B                                                          | mg/kg         | mg/kg                             | mg/kg                           |                    |
| 10237      | 1,1,1-Trichloroethane  | 71-55-6                                                               | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | 1,1,2-Trichloroethane  | 79-00-5                                                               | N.D.          | 0.0003                            | 0.006                           | 0.98               |
| 10237      | Trichloroethene        | 79-01-6                                                               | N.D.          | 0.0005                            | 0.006                           | 0.98               |
| 10237      | Trichlorofluoromethane | 75-69-4                                                               | N.D.          | 0.0007                            | 0.006                           | 0.98               |
| 10237      | Vinyl Chloride         | 75-01-4                                                               | N.D.          | 0.0006                            | 0.006                           | 0.98               |
| 10237      | Xylene (Total)         | 1330-20-7                                                             | N.D.          | 0.001                             | 0.006                           | 0.98               |
| Metals     |                        | SW-846 6010B                                                          | mg/kg         | mg/kg                             | mg/kg                           |                    |
| 06955      | Lead                   | 7439-92-1                                                             | 39.7          | 0.479                             | 1.20                            | 1                  |
| Wet Ch     | emistry                | SM 2540 G-2011<br>%Moisture Calc                                      | %             | %                                 | %                               |                    |
| 00111      | Moisture               | n.a.                                                                  | 13.1          | 0.50                              | 0.50                            | 1                  |
|            |                        | oss in weight of the sample after is. The moisture result reported is |               |                                   |                                 |                    |

|            | Laboratory Sample Analysis Record |                                  |        |              |                           |                    |                    |  |  |  |
|------------|-----------------------------------|----------------------------------|--------|--------------|---------------------------|--------------------|--------------------|--|--|--|
| CAT<br>No. | Analysis Name                     | Method                           | Trial# | Batch#       | Analysis<br>Date and Time | Analyst            | Dilution<br>Factor |  |  |  |
| 10237      | VOCs TCL (4.3) 8260 Soil          | SW-846 8260B                     | 1      | X183201AA    | 11/16/2018 11:05          | Jennifer K Howe    | 0.98               |  |  |  |
| 07579      | GC/MS-5g Field<br>Preserv.MeOH-NC | SW-846 5035A                     | 1      | 201831751902 | 11/09/2018 11:40          | Client Supplied    | 1                  |  |  |  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A                     | 1      | 201831751902 | 11/09/2018 11:40          | Client Supplied    | 1                  |  |  |  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A                     | 2      | 201831751902 | 11/09/2018 11:40          | Client Supplied    | 1                  |  |  |  |
| 06955      | Lead                              | SW-846 6010B                     | 1      | 183180570801 | 11/17/2018 20:27          | Elaine F Stoltzfus | 1                  |  |  |  |
| 05708      | ICP-ICPMS - SW, 3050B - U3        | SW-846 3050B                     | 1      | 183180570801 | 11/16/2018 05:25          | Annamaria Kuhns    | 1                  |  |  |  |
| 00111      | Moisture                          | SM 2540 G-2011<br>%Moisture Calc | 1      | 18320820007B | 11/16/2018 15:44          | Larry E Bevins     | 1                  |  |  |  |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SB04 Grab Soil

SB041051109181035 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018 10:35 Environmental Alliance, Inc.
ELLE Sample #: SW 9897100
ELLE Group #: 2008831

| CAT<br>No. | Analysis Name               | CAS Number | Dry<br>Result | Dry<br>Method<br>Detection Limit* | Dry<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|-----------------------------|------------|---------------|-----------------------------------|---------------------------------|--------------------|
| GC/MS      | Volatiles SW-846 826        | 0B         | mg/kg         | mg/kg                             | mg/kg                           |                    |
| 10237      | Acetone                     | 67-64-1    | 0.006 J       | 0.005                             | 0.017                           | 0.76               |
| 10237      | Benzene                     | 71-43-2    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Bromodichloromethane        | 75-27-4    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Bromoform                   | 75-25-2    | N.D.          | 0.003                             | 0.009                           | 0.76               |
| 10237      | Bromomethane                | 74-83-9    | N.D.          | 0.0007                            | 0.004                           | 0.76               |
| 10237      | 2-Butanone                  | 78-93-3    | N.D.          | 0.0009                            | 0.009                           | 0.76               |
| 10237      | Carbon Disulfide            | 75-15-0    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Carbon Tetrachloride        | 56-23-5    | N.D.          | 0.0004                            | 0.004                           | 0.76               |
| 10237      | Chlorobenzene               | 108-90-7   | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Chloroethane                | 75-00-3    | N.D.          | 0.002                             | 0.004                           | 0.76               |
| 10237      | Chloroform                  | 67-66-3    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Chloromethane               | 74-87-3    | N.D.          | 0.0004                            | 0.004                           | 0.76               |
| 10237      | Cyclohexane                 | 110-82-7   | N.D.          | 0.0004                            | 0.004                           | 0.76               |
| 10237      | 1,2-Dibromo-3-chloropropane | 96-12-8    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Dibromochloromethane        | 124-48-1   | N.D.          | 0.003                             | 0.007                           | 0.76               |
| 10237      | 1,2-Dibromoethane           | 106-93-4   | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,2-Dichlorobenzene         | 95-50-1    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,3-Dichlorobenzene         | 541-73-1   | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,4-Dichlorobenzene         | 106-46-7   | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Dichlorodifluoromethane     | 75-71-8    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,1-Dichloroethane          | 75-34-3    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,2-Dichloroethane          | 107-06-2   | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,1-Dichloroethene          | 75-35-4    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | cis-1,2-Dichloroethene      | 156-59-2   | N.D.          | 0.0004                            | 0.004                           | 0.76               |
| 10237      | trans-1,2-Dichloroethene    | 156-60-5   | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,2-Dichloropropane         | 78-87-5    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | cis-1,3-Dichloropropene     | 10061-01-5 | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | trans-1,3-Dichloropropene   | 10061-02-6 | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Ethylbenzene                | 100-41-4   | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Freon 113                   | 76-13-1    | N.D.          | 0.0003                            | 0.009                           | 0.76               |
| 10237      | 2-Hexanone                  | 591-78-6   | N.D.          | 0.0009                            | 0.009                           | 0.76               |
| 10237      | Isopropylbenzene            | 98-82-8    | N.D.          | 0.0004                            | 0.004                           | 0.76               |
| 10237      | Methyl Acetate              | 79-20-9    | N.D.          | 0.0009                            | 0.004                           | 0.76               |
| 10237      | Methyl Tertiary Butyl Ether | 1634-04-4  | N.D.          | 0.0004                            | 0.004                           | 0.76               |
| 10237      | 4-Methyl-2-pentanone        | 108-10-1   | N.D.          | 0.0009                            | 0.009                           | 0.76               |
| 10237      | Methylcyclohexane           | 108-87-2   | N.D.          | 0.0005                            | 0.004                           | 0.76               |
| 10237      | Methylene Chloride          | 75-09-2    | N.D.          | 0.0009                            | 0.004                           | 0.76               |
| 10237      | Styrene                     | 100-42-5   | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,1,2,2-Tetrachloroethane   | 79-34-5    | N.D.          | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Tetrachloroethene           | 127-18-4   | N.D.          | 0.0004                            | 0.004                           | 0.76               |
| 10237      | Toluene                     | 108-88-3   | 0.0003 J      | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,2,4-Trichlorobenzene      | 120-82-1   | N.D.          | 0.0007                            | 0.004                           | 0.76               |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SB04 Grab Soil

SB041051109181035 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018 10:35

Environmental Alliance, Inc.
ELLE Sample #: SW 9897100
ELLE Group #: 2008831

| CAT<br>No. | Analysis Name          | CAS Nur                                                           | Dry<br>nber Result | Dry<br>Method<br>Detection Limit* | Dry<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|------------------------|-------------------------------------------------------------------|--------------------|-----------------------------------|---------------------------------|--------------------|
| GC/MS      | Volatiles              | SW-846 8260B                                                      | mg/kg              | mg/kg                             | mg/kg                           |                    |
| 10237      | 1,1,1-Trichloroethane  | 71-55-6                                                           | N.D.               | 0.0003                            | 0.004                           | 0.76               |
| 10237      | 1,1,2-Trichloroethane  | 79-00-5                                                           | N.D.               | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Trichloroethene        | 79-01-6                                                           | N.D.               | 0.0003                            | 0.004                           | 0.76               |
| 10237      | Trichlorofluoromethane | 75-69-4                                                           | N.D.               | 0.0005                            | 0.004                           | 0.76               |
| 10237      | Vinyl Chloride         | 75-01-4                                                           | N.D.               | 0.0004                            | 0.004                           | 0.76               |
| 10237      | Xylene (Total)         | 1330-20-                                                          | 7 N.D.             | 0.0008                            | 0.004                           | 0.76               |
| Metals     |                        | SW-846 6010B                                                      | mg/kg              | mg/kg                             | mg/kg                           |                    |
| 06955      | Lead                   | 7439-92-                                                          | 1 17.3             | 0.661                             | 1.65                            | 1                  |
| Wet Ch     | emistry                | SM 2540 G-2011<br>%Moisture Calc                                  | %                  | %                                 | %                               |                    |
| 00111      | Moisture               | n.a.                                                              | 13.5               | 0.50                              | 0.50                            | 1                  |
|            |                        | oss in weight of the sample at<br>is. The moisture result reporte |                    |                                   |                                 |                    |

|            | Laboratory Sample Analysis Record |                                  |        |              |                           |                    |                    |  |  |  |
|------------|-----------------------------------|----------------------------------|--------|--------------|---------------------------|--------------------|--------------------|--|--|--|
| CAT<br>No. | Analysis Name                     | Method                           | Trial# | Batch#       | Analysis<br>Date and Time | Analyst            | Dilution<br>Factor |  |  |  |
| 10237      | VOCs TCL (4.3) 8260 Soil          | SW-846 8260B                     | 1      | X183201AA    | 11/16/2018 11:29          | Jennifer K Howe    | 0.76               |  |  |  |
| 07579      | GC/MS-5g Field<br>Preserv.MeOH-NC | SW-846 5035A                     | 1      | 201831751902 | 11/09/2018 10:35          | Client Supplied    | 1                  |  |  |  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A                     | 1      | 201831751902 | 11/09/2018 10:35          | Client Supplied    | 1                  |  |  |  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A                     | 2      | 201831751902 | 11/09/2018 10:35          | Client Supplied    | 1                  |  |  |  |
| 06955      | Lead                              | SW-846 6010B                     | 1      | 183180570801 | 11/17/2018 20:30          | Elaine F Stoltzfus | 1                  |  |  |  |
| 05708      | ICP-ICPMS - SW, 3050B - U3        | SW-846 3050B                     | 1      | 183180570801 | 11/16/2018 05:25          | Annamaria Kuhns    | 1                  |  |  |  |
| 00111      | Moisture                          | SM 2540 G-2011<br>%Moisture Calc | 1      | 18320820007B | 11/16/2018 15:44          | Larry E Bevins     | 1                  |  |  |  |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SB05 Grab Soil

SB050951109181100 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018 11:00 Environmental Alliance, Inc.
ELLE Sample #: SW 9897101
ELLE Group #: 2008831

| CAT<br>No. | Analysis Name               | CAS Number | Dry<br>Result | Dry<br>Method<br>Detection Limit* | Dry<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|-----------------------------|------------|---------------|-----------------------------------|---------------------------------|--------------------|
| GC/MS      | Volatiles SW-846 826        | 0B         | mg/kg         | mg/kg                             | mg/kg                           |                    |
| 10237      | Acetone                     | 67-64-1    | 0.032         | 0.007                             | 0.022                           | 0.92               |
| 10237      | Benzene                     | 71-43-2    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | Bromodichloromethane        | 75-27-4    | N.D.          | 0.0003                            | 0.005                           | 0.92               |
| 10237      | Bromoform                   | 75-25-2    | N.D.          | 0.004                             | 0.011                           | 0.92               |
| 10237      | Bromomethane                | 74-83-9    | N.D.          | 0.0009                            | 0.005                           | 0.92               |
| 10237      | 2-Butanone                  | 78-93-3    | 0.004 J       | 0.001                             | 0.011                           | 0.92               |
| 10237      | Carbon Disulfide            | 75-15-0    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | Carbon Tetrachloride        | 56-23-5    | N.D.          | 0.0005                            | 0.005                           | 0.92               |
| 10237      | Chlorobenzene               | 108-90-7   | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | Chloroethane                | 75-00-3    | N.D.          | 0.002                             | 0.005                           | 0.92               |
| 10237      | Chloroform                  | 67-66-3    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | Chloromethane               | 74-87-3    | N.D.          | 0.0005                            | 0.005                           | 0.92               |
| 10237      | Cyclohexane                 | 110-82-7   | N.D.          | 0.0005                            | 0.005                           | 0.92               |
| 10237      | 1,2-Dibromo-3-chloropropane | 96-12-8    | N.D.          | 0.0003                            | 0.005                           | 0.92               |
| 10237      | Dibromochloromethane        | 124-48-1   | N.D.          | 0.003                             | 0.009                           | 0.92               |
| 10237      | 1,2-Dibromoethane           | 106-93-4   | N.D.          | 0.0003                            | 0.005                           | 0.92               |
| 10237      | 1,2-Dichlorobenzene         | 95-50-1    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | 1,3-Dichlorobenzene         | 541-73-1   | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | 1,4-Dichlorobenzene         | 106-46-7   | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | Dichlorodifluoromethane     | 75-71-8    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | 1,1-Dichloroethane          | 75-34-3    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | 1,2-Dichloroethane          | 107-06-2   | N.D.          | 0.0003                            | 0.005                           | 0.92               |
| 10237      | 1,1-Dichloroethene          | 75-35-4    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | cis-1,2-Dichloroethene      | 156-59-2   | N.D.          | 0.0005                            | 0.005                           | 0.92               |
| 10237      | trans-1,2-Dichloroethene    | 156-60-5   | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | 1,2-Dichloropropane         | 78-87-5    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | cis-1,3-Dichloropropene     | 10061-01-5 | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | trans-1,3-Dichloropropene   | 10061-02-6 | N.D.          | 0.0003                            | 0.005                           | 0.92               |
| 10237      | Ethylbenzene                | 100-41-4   | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | Freon 113                   | 76-13-1    | N.D.          | 0.0004                            | 0.011                           | 0.92               |
| 10237      | 2-Hexanone                  | 591-78-6   | N.D.          | 0.001                             | 0.011                           | 0.92               |
| 10237      | Isopropylbenzene            | 98-82-8    | N.D.          | 0.0005                            | 0.005                           | 0.92               |
| 10237      | Methyl Acetate              | 79-20-9    | N.D.          | 0.001                             | 0.005                           | 0.92               |
| 10237      | Methyl Tertiary Butyl Ether | 1634-04-4  | 0.13          | 0.0005                            | 0.005                           | 0.92               |
| 10237      | 4-Methyl-2-pentanone        | 108-10-1   | N.D.          | 0.001                             | 0.011                           | 0.92               |
| 10237      | Methylcyclohexane           | 108-87-2   | N.D.          | 0.0007                            | 0.005                           | 0.92               |
| 10237      | Methylene Chloride          | 75-09-2    | N.D.          | 0.001                             | 0.005                           | 0.92               |
| 10237      | Styrene                     | 100-42-5   | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | 1,1,2,2-Tetrachloroethane   | 79-34-5    | N.D.          | 0.0003                            | 0.005                           | 0.92               |
| 10237      | Tetrachloroethene           | 127-18-4   | N.D.          | 0.0005                            | 0.005                           | 0.92               |
| 10237      | Toluene                     | 108-88-3   | 0.002 J       | 0.0003                            | 0.005                           | 0.92               |
| 10237      | 1,2,4-Trichlorobenzene      | 120-82-1   | N.D.          | 0.0009                            | 0.005                           | 0.92               |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SB05 Grab Soil

SB050951109181100 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018 11:00

Environmental Alliance, Inc.
ELLE Sample #: SW 9897101
ELLE Group #: 2008831

| CAT<br>No. | Analysis Name                                                               | C                              | AS Number | Dry<br>Result | Dry<br>Method<br>Detection Limit* | Dry<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|-----------------------------------------------------------------------------|--------------------------------|-----------|---------------|-----------------------------------|---------------------------------|--------------------|
| GC/MS      | Volatiles                                                                   | SW-846 8260B                   |           | mg/kg         | mg/kg                             | mg/kg                           |                    |
| 10237      | 1,1,1-Trichloroethane                                                       | 71                             | -55-6     | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | 1,1,2-Trichloroethane                                                       | 79                             | 9-00-5    | N.D.          | 0.0003                            | 0.005                           | 0.92               |
| 10237      | Trichloroethene                                                             | 79                             | 9-01-6    | N.D.          | 0.0004                            | 0.005                           | 0.92               |
| 10237      | Trichlorofluoromethane                                                      | 75                             | 5-69-4    | N.D.          | 0.0007                            | 0.005                           | 0.92               |
| 10237      | Vinyl Chloride                                                              | 75                             | 5-01-4    | N.D.          | 0.0005                            | 0.005                           | 0.92               |
| 10237      | Xylene (Total)                                                              | 13                             | 330-20-7  | 0.001 J       | 0.001                             | 0.005                           | 0.92               |
| Metals     |                                                                             | SW-846 6010B                   |           | mg/kg         | mg/kg                             | mg/kg                           |                    |
| 06955      | Lead                                                                        | 74                             | 139-92-1  | 29.2          | 0.573                             | 1.43                            | 1                  |
| Wet Ch     | emistry                                                                     | SM 2540 G-201<br>%Moisture Cal |           | %             | %                                 | %                               |                    |
| 00111      | Moisture                                                                    | n.:                            | a.        | 16.2          | 0.50                              | 0.50                            | 1                  |
|            | Moisture represents the I<br>103 - 105 degrees Celsiu<br>as-received basis. |                                |           |               |                                   |                                 |                    |

|            | Laboratory Sample Analysis Record |                                  |        |              |                           |                    |                    |  |  |  |
|------------|-----------------------------------|----------------------------------|--------|--------------|---------------------------|--------------------|--------------------|--|--|--|
| CAT<br>No. | Analysis Name                     | Method                           | Trial# | Batch#       | Analysis<br>Date and Time | Analyst            | Dilution<br>Factor |  |  |  |
| 10237      | VOCs TCL (4.3) 8260 Soil          | SW-846 8260B                     | 1      | X183201AA    | 11/16/2018 11:52          | Jennifer K Howe    | 0.92               |  |  |  |
| 07579      | GC/MS-5g Field<br>Preserv.MeOH-NC | SW-846 5035A                     | 1      | 201831751902 | 11/09/2018 11:00          | Client Supplied    | 1                  |  |  |  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A                     | 1      | 201831751902 | 11/09/2018 11:00          | Client Supplied    | 1                  |  |  |  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A                     | 2      | 201831751902 | 11/09/2018 11:00          | Client Supplied    | 1                  |  |  |  |
| 06955      | Lead                              | SW-846 6010B                     | 1      | 183180570801 | 11/17/2018 20:32          | Elaine F Stoltzfus | 1                  |  |  |  |
| 05708      | ICP-ICPMS - SW, 3050B - U3        | SW-846 3050B                     | 1      | 183180570801 | 11/16/2018 05:25          | Annamaria Kuhns    | 1                  |  |  |  |
| 00111      | Moisture                          | SM 2540 G-2011<br>%Moisture Calc | 1      | 18320820007B | 11/16/2018 15:44          | Larry E Bevins     | 1                  |  |  |  |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MeOH

Trip\_Blanks110918 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018

Environmental Alliance, Inc.
ELLE Sample #: G5 9897102
ELLE Group #: 2008831

Matrix: MeOH

| CAT<br>No. | Analysis Name               | CAS Number | As Received<br>Result | As Received<br>Method<br>Detection Limit* | As Received<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|-----------------------------|------------|-----------------------|-------------------------------------------|-----------------------------------------|--------------------|
| GC/MS      | Volatiles SW-846            | 8260B      | mg/kg                 | mg/kg                                     | mg/kg                                   |                    |
| 10237      | Acetone                     | 67-64-1    | N.D.                  | 0.006                                     | 0.020                                   | 1                  |
| 10237      | Benzene                     | 71-43-2    | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | Bromodichloromethane        | 75-27-4    | N.D.                  | 0.0003                                    | 0.005                                   | 1                  |
| 10237      | Bromoform                   | 75-25-2    | N.D.                  | 0.004                                     | 0.010                                   | 1                  |
| 10237      | Bromomethane                | 74-83-9    | N.D.                  | 0.0008                                    | 0.005                                   | 1                  |
| 10237      | 2-Butanone                  | 78-93-3    | N.D.                  | 0.001                                     | 0.010                                   | 1                  |
| 10237      | Carbon Disulfide            | 75-15-0    | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | Carbon Tetrachloride        | 56-23-5    | N.D.                  | 0.0005                                    | 0.005                                   | 1                  |
| 10237      | Chlorobenzene               | 108-90-7   | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | Chloroethane                | 75-00-3    | N.D.                  | 0.002                                     | 0.005                                   | 1                  |
| 10237      | Chloroform                  | 67-66-3    | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | Chloromethane               | 74-87-3    | N.D.                  | 0.0005                                    | 0.005                                   | 1                  |
| 10237      | Cyclohexane                 | 110-82-7   | N.D.                  | 0.0005                                    | 0.005                                   | 1                  |
| 10237      | 1,2-Dibromo-3-chloropropane | 96-12-8    | N.D.                  | 0.0003                                    | 0.005                                   | 1                  |
| 10237      | Dibromochloromethane        | 124-48-1   | N.D.                  | 0.003                                     | 0.008                                   | 1                  |
| 10237      | 1,2-Dibromoethane           | 106-93-4   | N.D.                  | 0.0003                                    | 0.005                                   | 1                  |
| 10237      | 1,2-Dichlorobenzene         | 95-50-1    | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | 1,3-Dichlorobenzene         | 541-73-1   | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | 1,4-Dichlorobenzene         | 106-46-7   | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | Dichlorodifluoromethane     | 75-71-8    | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | 1,1-Dichloroethane          | 75-34-3    | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | 1,2-Dichloroethane          | 107-06-2   | N.D.                  | 0.0003                                    | 0.005                                   | 1                  |
| 10237      | 1,1-Dichloroethene          | 75-35-4    | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | cis-1,2-Dichloroethene      | 156-59-2   | N.D.                  | 0.0005                                    | 0.005                                   | 1                  |
| 10237      | trans-1,2-Dichloroethene    | 156-60-5   | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | 1,2-Dichloropropane         | 78-87-5    | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | cis-1,3-Dichloropropene     | 10061-01-5 | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | trans-1,3-Dichloropropene   | 10061-02-6 | N.D.                  | 0.0003                                    | 0.005                                   | 1                  |
| 10237      | Ethylbenzene                | 100-41-4   | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | Freon 113                   | 76-13-1    | N.D.                  | 0.0004                                    | 0.010                                   | 1                  |
| 10237      | 2-Hexanone                  | 591-78-6   | N.D.                  | 0.001                                     | 0.010                                   | 1                  |
| 10237      | Isopropylbenzene            | 98-82-8    | N.D.                  | 0.0005                                    | 0.005                                   | 1                  |
| 10237      | Methyl Acetate              | 79-20-9    | N.D.                  | 0.001                                     | 0.005                                   | 1                  |
| 10237      | Methyl Tertiary Butyl Ether | 1634-04-4  | N.D.                  | 0.0005                                    | 0.005                                   | 1                  |
| 10237      | 4-Methyl-2-pentanone        | 108-10-1   | N.D.                  | 0.001                                     | 0.010                                   | 1                  |
| 10237      | Methylcyclohexane           | 108-87-2   | N.D.                  | 0.0006                                    | 0.005                                   | 1                  |
| 10237      | Methylene Chloride          | 75-09-2    | N.D.                  | 0.001                                     | 0.005                                   | 1                  |
| 10237      | Styrene                     | 100-42-5   | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | 1,1,2,2-Tetrachloroethane   | 79-34-5    | N.D.                  | 0.0003                                    | 0.005                                   | 1                  |
| 10237      | Tetrachloroethene           | 127-18-4   | N.D.                  | 0.0005                                    | 0.005                                   | 1                  |
| 10237      | Toluene                     | 108-88-3   | 0.002 J               | 0.0003                                    | 0.005                                   | 1                  |
| 10237      | 1,2,4-Trichlorobenzene      | 120-82-1   | N.D.                  | 0.0008                                    | 0.005                                   | 1                  |

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MeOH

Trip\_Blanks110918 4642, VA

Project Name: 4642, VA

Submittal Date/Time: 11/13/2018 10:50 Collection Date/Time: 11/09/2018

Environmental Alliance, Inc.

ELLE Sample #: G5 9897102 ELLE Group #: 2008831

Matrix: MeOH

| CAT<br>No. | Analysis Name          | CAS Number   | As Received<br>Result | As Received<br>Method<br>Detection Limit* | As Received<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|------------------------|--------------|-----------------------|-------------------------------------------|-----------------------------------------|--------------------|
| GC/MS      | Volatiles              | SW-846 8260B | mg/kg                 | mg/kg                                     | mg/kg                                   |                    |
| 10237      | 1,1,1-Trichloroethane  | 71-55-6      | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | 1,1,2-Trichloroethane  | 79-00-5      | N.D.                  | 0.0003                                    | 0.005                                   | 1                  |
| 10237      | Trichloroethene        | 79-01-6      | N.D.                  | 0.0004                                    | 0.005                                   | 1                  |
| 10237      | Trichlorofluoromethane | 75-69-4      | N.D.                  | 0.0006                                    | 0.005                                   | 1                  |
| 10237      | Vinyl Chloride         | 75-01-4      | N.D.                  | 0.0005                                    | 0.005                                   | 1                  |
| 10237      | Xylene (Total)         | 1330-20-7    | N.D.                  | 0.0009                                    | 0.005                                   | 1                  |

#### **Laboratory Sample Analysis Record**

|            |                                   |              | -      | -            |                           |                 |                    |
|------------|-----------------------------------|--------------|--------|--------------|---------------------------|-----------------|--------------------|
| CAT<br>No. | Analysis Name                     | Method       | Trial# | Batch#       | Analysis<br>Date and Time | Analyst         | Dilution<br>Factor |
| 10237      | VOCs TCL (4.3) 8260 Soil          | SW-846 8260B | 1      | X183201AA    | 11/16/2018 10:19          | Jennifer K Howe | 1                  |
| 07579      | GC/MS-5g Field<br>Preserv.MeOH-NC | SW-846 5035A | 1      | 201831751902 | 11/09/2018 00:00          | Client Supplied | 1                  |
| 02392      | L/H Field Preserved Bisulfate     | SW-846 5035A | 1      | 201831751902 | 11/09/2018 00:00          | Client Supplied | 1                  |

### **Quality Control Summary**

Client Name: Environmental Alliance, Inc. Group Number: 2008831

Reported: 11/25/2018 16:37

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

#### **Method Blank**

| Analysis Name               | Result         | MDL**         | LOQ    |
|-----------------------------|----------------|---------------|--------|
|                             | mg/kg          | mg/kg         | mg/kg  |
| Batch number: X183201AA     | Sample number( | s): 9897098-9 | 897102 |
| Acetone                     | N.D.           | 0.006         | 0.020  |
| Benzene                     | N.D.           | 0.0004        | 0.005  |
| Bromodichloromethane        | N.D.           | 0.0003        | 0.005  |
| Bromoform                   | N.D.           | 0.004         | 0.010  |
| Bromomethane                | N.D.           | 0.0008        | 0.005  |
| 2-Butanone                  | N.D.           | 0.001         | 0.010  |
| Carbon Disulfide            | N.D.           | 0.0004        | 0.005  |
| Carbon Tetrachloride        | N.D.           | 0.0005        | 0.005  |
| Chlorobenzene               | N.D.           | 0.0004        | 0.005  |
| Chloroethane                | N.D.           | 0.002         | 0.005  |
| Chloroform                  | N.D.           | 0.0004        | 0.005  |
| Chloromethane               | N.D.           | 0.0005        | 0.005  |
| Cyclohexane                 | N.D.           | 0.0005        | 0.005  |
| 1,2-Dibromo-3-chloropropane | N.D.           | 0.0003        | 0.005  |
| Dibromochloromethane        | N.D.           | 0.003         | 0.008  |
| 1,2-Dibromoethane           | N.D.           | 0.0003        | 0.005  |
| 1,2-Dichlorobenzene         | N.D.           | 0.0004        | 0.005  |
| 1,3-Dichlorobenzene         | N.D.           | 0.0004        | 0.005  |
| 1,4-Dichlorobenzene         | N.D.           | 0.0004        | 0.005  |
| Dichlorodifluoromethane     | N.D.           | 0.0004        | 0.005  |
| 1,1-Dichloroethane          | N.D.           | 0.0004        | 0.005  |
| 1,2-Dichloroethane          | N.D.           | 0.0003        | 0.005  |
| 1,1-Dichloroethene          | N.D.           | 0.0004        | 0.005  |
| cis-1,2-Dichloroethene      | N.D.           | 0.0005        | 0.005  |
| trans-1,2-Dichloroethene    | N.D.           | 0.0004        | 0.005  |
| 1,2-Dichloropropane         | N.D.           | 0.0004        | 0.005  |
| cis-1,3-Dichloropropene     | N.D.           | 0.0004        | 0.005  |
| trans-1,3-Dichloropropene   | N.D.           | 0.0003        | 0.005  |
| Ethylbenzene                | N.D.           | 0.0004        | 0.005  |
| Freon 113                   | N.D.           | 0.0004        | 0.010  |
| 2-Hexanone                  | N.D.           | 0.001         | 0.010  |
| Isopropylbenzene            | N.D.           | 0.0005        | 0.005  |
| Methyl Acetate              | N.D.           | 0.001         | 0.005  |
| Methyl Tertiary Butyl Ether | N.D.           | 0.0005        | 0.005  |
| 4-Methyl-2-pentanone        | N.D.           | 0.001         | 0.010  |
| Methylcyclohexane           | N.D.           | 0.0006        | 0.005  |
| Methylene Chloride          | N.D.           | 0.001         | 0.005  |
| Styrene                     | N.D.           | 0.0004        | 0.005  |
| 1,1,2,2-Tetrachloroethane   | N.D.           | 0.0003        | 0.005  |

<sup>\*-</sup> Outside of specification

<sup>\*\*-</sup>This limit was used in the evaluation of the final result for the blank

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

### **Quality Control Summary**

Client Name: Environmental Alliance, Inc. Group Number: 2008831

Reported: 11/25/2018 16:37

### **Method Blank (continued)**

| Analysis Name              | Result<br>mg/kg                         | MDL**<br>mg/kg | LOQ<br>mg/kg |  |  |
|----------------------------|-----------------------------------------|----------------|--------------|--|--|
| Tetrachloroethene          | N.D.                                    | 0.0005         | 0.005        |  |  |
| Toluene                    | N.D.                                    | 0.0003         | 0.005        |  |  |
| 1,2,4-Trichlorobenzene     | N.D.                                    | 0.0008         | 0.005        |  |  |
| 1,1,1-Trichloroethane      | N.D.                                    | 0.0004         | 0.005        |  |  |
| 1,1,2-Trichloroethane      | N.D.                                    | 0.0003         | 0.005        |  |  |
| Trichloroethene            | N.D.                                    | 0.0004         | 0.005        |  |  |
| Trichlorofluoromethane     | N.D.                                    | 0.0006         | 0.005        |  |  |
| Vinyl Chloride             | N.D.                                    | 0.0005         | 0.005        |  |  |
| Xylene (Total)             | N.D.                                    | 0.0009         | 0.005        |  |  |
| Batch number: 183180570801 | 30570801 Sample number(s): 9897098-9897 |                |              |  |  |
| Lead                       | N.D.                                    | 0.600          | 1.50         |  |  |

#### LCS/LCSD

| Analysis Name               | LCS Spike<br>Added | LCS<br>Conc    | LCSD Spike<br>Added | LCSD<br>Conc | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD | RPD<br>Max |
|-----------------------------|--------------------|----------------|---------------------|--------------|-------------|--------------|--------------------|-----|------------|
|                             | mg/kg              | mg/kg          | mg/kg               | mg/kg        |             |              |                    |     |            |
| Batch number: X183201AA     | Sample number      | (s): 9897098-9 | 897102              |              |             |              |                    |     |            |
| Acetone                     | 0.150              | 0.135          | 0.150               | 0.137        | 90          | 91           | 41-150             | 1   | 30         |
| Benzene                     | 0.0200             | 0.0206         | 0.0200              | 0.0201       | 103         | 100          | 80-120             | 3   | 30         |
| Bromodichloromethane        | 0.0200             | 0.0176         | 0.0200              | 0.0169       | 88          | 84           | 70-120             | 4   | 30         |
| Bromoform                   | 0.0200             | 0.0132         | 0.0200              | 0.0131       | 66          | 65           | 51-127             | 1   | 30         |
| Bromomethane                | 0.0200             | 0.0193         | 0.0200              | 0.0183       | 96          | 92           | 45-140             | 5   | 30         |
| 2-Butanone                  | 0.150              | 0.113          | 0.150               | 0.112        | 75          | 75           | 57-128             | 0   | 30         |
| Carbon Disulfide            | 0.0200             | 0.0195         | 0.0200              | 0.0189       | 97          | 95           | 64-133             | 3   | 30         |
| Carbon Tetrachloride        | 0.0200             | 0.0170         | 0.0200              | 0.0166       | 85          | 83           | 64-134             | 3   | 30         |
| Chlorobenzene               | 0.0200             | 0.0203         | 0.0200              | 0.0198       | 101         | 99           | 80-120             | 2   | 30         |
| Chloroethane                | 0.0200             | 0.0209         | 0.0200              | 0.0207       | 104         | 103          | 43-135             | 1   | 30         |
| Chloroform                  | 0.0200             | 0.0189         | 0.0200              | 0.0184       | 94          | 92           | 80-120             | 3   | 30         |
| Chloromethane               | 0.0200             | 0.0204         | 0.0200              | 0.0197       | 102         | 99           | 56-120             | 4   | 30         |
| Cyclohexane                 | 0.0200             | 0.0167         | 0.0200              | 0.0161       | 83          | 81           | 58-126             | 3   | 30         |
| 1,2-Dibromo-3-chloropropane | 0.0200             | 0.0139         | 0.0200              | 0.0143       | 69          | 72           | 48-134             | 3   | 30         |
| Dibromochloromethane        | 0.0200             | 0.0158         | 0.0200              | 0.0160       | 79          | 80           | 69-125             | 1   | 30         |
| 1,2-Dibromoethane           | 0.0200             | 0.0180         | 0.0200              | 0.0178       | 90          | 89           | 76-120             | 1   | 30         |
| 1,2-Dichlorobenzene         | 0.0200             | 0.0195         | 0.0200              | 0.0196       | 98          | 98           | 76-120             | 1   | 30         |
| 1,3-Dichlorobenzene         | 0.0200             | 0.0189         | 0.0200              | 0.0188       | 94          | 94           | 75-120             | 0   | 30         |
| 1,4-Dichlorobenzene         | 0.0200             | 0.0195         | 0.0200              | 0.0194       | 98          | 97           | 80-120             | 1   | 30         |
| Dichlorodifluoromethane     | 0.0200             | 0.0155         | 0.0200              | 0.0149       | 77          | 74           | 21-127             | 4   | 30         |
| 1,1-Dichloroethane          | 0.0200             | 0.0184         | 0.0200              | 0.0181       | 92          | 90           | 79-120             | 2   | 30         |
| 1,2-Dichloroethane          | 0.0200             | 0.0178         | 0.0200              | 0.0178       | 89          | 89           | 71-128             | 0   | 30         |
| 1,1-Dichloroethene          | 0.0200             | 0.0201         | 0.0200              | 0.0196       | 101         | 98           | 73-129             | 2   | 30         |

<sup>\*-</sup> Outside of specification

<sup>\*\*-</sup>This limit was used in the evaluation of the final result for the blank

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

### **Quality Control Summary**

Client Name: Environmental Alliance, Inc. Group Number: 2008831

Reported: 11/25/2018 16:37

### LCS/LCSD (continued)

| Analysis Name               | LCS Spike<br>Added<br>mg/kg | LCS<br>Conc<br>mg/kg | LCSD Spike<br>Added<br>mg/kg | LCSD<br>Conc<br>mg/kg | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD | RPD<br>Max |
|-----------------------------|-----------------------------|----------------------|------------------------------|-----------------------|-------------|--------------|--------------------|-----|------------|
| cis-1,2-Dichloroethene      | 0.0200                      | 0.0198               | 0.0200                       | 0.0198                | 99          | 99           | 80-123             | 0   | 30         |
| trans-1,2-Dichloroethene    | 0.0200                      | 0.0205               | 0.0200                       | 0.0200                | 103         | 100          | 80-125             | 3   | 30         |
| 1,2-Dichloropropane         | 0.0200                      | 0.0190               | 0.0200                       | 0.0188                | 95          | 94           | 80-120             | 1   | 30         |
| cis-1,3-Dichloropropene     | 0.0200                      | 0.0155               | 0.0200                       | 0.0153                | 78          | 77           | 66-120             | 1   | 30         |
| trans-1,3-Dichloropropene   | 0.0200                      | 0.0153               | 0.0200                       | 0.0151                | 76          | 75           | 68-122             | 2   | 30         |
| Ethylbenzene                | 0.0200                      | 0.0194               | 0.0200                       | 0.0189                | 97          | 95           | 78-120             | 3   | 30         |
| Freon 113                   | 0.0200                      | 0.0220               | 0.0200                       | 0.0210                | 110         | 105          | 64-135             | 5   | 30         |
| 2-Hexanone                  | 0.100                       | 0.0723               | 0.100                        | 0.0724                | 72          | 72           | 54-140             | 0   | 30         |
| Isopropylbenzene            | 0.0200                      | 0.0187               | 0.0200                       | 0.0183                | 93          | 91           | 77-120             | 2   | 30         |
| Methyl Acetate              | 0.0200                      | 0.0155               | 0.0200                       | 0.0166                | 78          | 83           | 67-128             | 6   | 30         |
| Methyl Tertiary Butyl Ether | 0.0200                      | 0.0153               | 0.0200                       | 0.0153                | 77          | 77           | 72-120             | 0   | 30         |
| 4-Methyl-2-pentanone        | 0.100                       | 0.0721               | 0.100                        | 0.0728                | 72          | 73           | 67-128             | 1   | 30         |
| Methylcyclohexane           | 0.0200                      | 0.0171               | 0.0200                       | 0.0166                | 86          | 83           | 61-124             | 3   | 30         |
| Methylene Chloride          | 0.0200                      | 0.0198               | 0.0200                       | 0.0193                | 99          | 97           | 76-122             | 2   | 30         |
| Styrene                     | 0.0200                      | 0.0182               | 0.0200                       | 0.0177                | 91          | 88           | 76-120             | 3   | 30         |
| 1,1,2,2-Tetrachloroethane   | 0.0200                      | 0.0193               | 0.0200                       | 0.0197                | 96          | 98           | 69-125             | 2   | 30         |
| Tetrachloroethene           | 0.0200                      | 0.0182               | 0.0200                       | 0.0177                | 91          | 88           | 73-120             | 3   | 30         |
| Toluene                     | 0.0200                      | 0.0202               | 0.0200                       | 0.0197                | 101         | 98           | 80-120             | 3   | 30         |
| 1,2,4-Trichlorobenzene      | 0.0200                      | 0.0162               | 0.0200                       | 0.0153                | 81          | 76           | 56-130             | 6   | 30         |
| 1,1,1-Trichloroethane       | 0.0200                      | 0.0157               | 0.0200                       | 0.0156                | 79          | 78           | 69-123             | 1   | 30         |
| 1,1,2-Trichloroethane       | 0.0200                      | 0.0201               | 0.0200                       | 0.0199                | 100         | 100          | 80-120             | 1   | 30         |
| Trichloroethene             | 0.0200                      | 0.0193               | 0.0200                       | 0.0187                | 96          | 93           | 80-120             | 3   | 30         |
| Trichlorofluoromethane      | 0.0200                      | 0.0200               | 0.0200                       | 0.0187                | 100         | 94           | 55-134             | 7   | 30         |
| Vinyl Chloride              | 0.0200                      | 0.0219               | 0.0200                       | 0.0210                | 109         | 105          | 52-120             | 4   | 30         |
| Xylene (Total)              | 0.0600                      | 0.0581               | 0.0600                       | 0.0567                | 97          | 95           | 75-120             | 2   | 30         |
|                             | mg/kg                       | mg/kg                | mg/kg                        | mg/kg                 |             |              |                    |     |            |
| Batch number: 183180570801  | Sample number               | (s): 9897098-9       | 897101                       |                       |             |              |                    |     |            |
| Lead                        | 15                          | 14.87                |                              |                       | 99          |              | 90-115             |     |            |
|                             | %                           | %                    | %                            | %                     |             |              |                    |     |            |
| Batch number: 18320820007B  | Sample number               | (s): 9897098-9       | 897101                       |                       |             |              |                    |     |            |
| Moisture                    | 89.5                        | 89.43                |                              |                       | 100         |              | 99-101             |     |            |

<sup>\*-</sup> Outside of specification

<sup>\*\*-</sup>This limit was used in the evaluation of the final result for the blank

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

### **Quality Control Summary**

Client Name: Environmental Alliance, Inc. Group Number: 2008831

Reported: 11/25/2018 16:37

**eurofins** 

#### **Laboratory Duplicate**

Background (BKG) = the sample used in conjunction with the duplicate

 Analysis Name
 BKG Conc
 DUP Conc
 DUP RPD
 DUP RPD Max

 %
 %

 Batch number: 18320820007B
 Sample number(s): 9897098-9897101 BKG: 9897099

 Moisture
 13.05
 12.86
 1
 5

#### **Surrogate Quality Control**

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs TCL (4.3) 8260 Soil

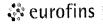
Batch number: X183201AA

|         | Dibromofluoromethane | 1,2-Dichloroethane-d4 | Toluene-d8 | 4-Bromofluorobenzene |
|---------|----------------------|-----------------------|------------|----------------------|
| 9897098 | 97                   | 106                   | 99         | 86                   |
| 9897099 | 98                   | 109                   | 100        | 89                   |
| 9897100 | 101                  | 116                   | 99         | 88                   |
| 9897101 | 94                   | 100                   | 97         | 95                   |
| 9897102 | 100                  | 113                   | 98         | 88                   |
| Blank   | 98                   | 105                   | 100        | 88                   |
| LCS     | 94                   | 103                   | 102        | 98                   |
| LCSD    | 93                   | 103                   | 103        | 99                   |
| Limits: | 50-141               | 54-135                | 52-141     | 50-131               |

<sup>\*-</sup> Outside of specification

<sup>\*\*-</sup>This limit was used in the evaluation of the final result for the blank

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.


<sup>(2)</sup> The unspiked result was more than four times the spike added.

# Environmental Analysis Request/Chain of Custody

| 🔅 eurofins                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |        | For                                     | Eurofir                  | ns Lar     | ncaster La       | borate      | ries Er                                 | nvironr                                 | mental        | luse | only          |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------|-----------------------------------------|--------------------------|------------|------------------|-------------|-----------------------------------------|-----------------------------------------|---------------|------|---------------|-------|---------|-------|-------|--------------------|----------------------------------------|--------------------------------------------------------|-----------------------------------------|-------------------------------------------|
| •                               | Lancaster Laborato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ories          | Acct. #      | 7039   | (                                       | Group                    | # 6        | 7 00 86          | 331.        | Sample                                  | . #                                     | 980           | 970  | 5.11,<br>5.98 | )     | 02      |       |       |                    | C                                      | OC:                                                    | # 5                                     | 7032                                      |
|                                 | Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |              | •      |                                         | Joup 1                   | #          |                  |             | sample                                  | ;#                                      | 1 -           |      | - 10          |       |         |       |       |                    |                                        |                                                        | 1 <b>8</b>                              |                                           |
|                                 | Client In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nformation     |              |        |                                         |                          |            | Matrix           | (           |                                         |                                         |               | -    | ٩naly         | /sis  | Requ    | ueste | ad    | JIKAANO MAGINDAG   |                                        | For Lab U                                              | Jse Only                                |                                           |
| Client:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Acct. #:     |        |                                         |                          | П          |                  | $\neg \Box$ | 1                                       |                                         | Pro           | eser | vatio         | n and | d Filt  | ratio | n Coc | les                | unima controverson relative            | FSC:                                                   |                                         |                                           |
| Environ mente                   | a) Alliance in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VC.            |              |        |                                         |                          | <u>0</u>   |                  | -   -       |                                         |                                         |               |      |               |       |         |       |       |                    |                                        | SCR#:                                                  | <i>234</i>                              | 509                                       |
| Project Name/#:<br>4642         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | PWSID#:      |        |                                         |                          | Tissue     | Ground           |             |                                         |                                         |               |      |               |       |         |       |       |                    |                                        | Pres                                                   | ervation                                | Codes                                     |
| Project Manager:                | W40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | P.O. #;      |        | *************************************** |                          |            | log J            |             |                                         |                                         |               |      |               |       |         |       |       |                    |                                        | H=HCI                                                  |                                         | =Thiosulfate                              |
| Auron sie                       | aal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 1750         | 24     |                                         |                          |            |                  | _           | 2                                       |                                         |               |      |               |       |         |       |       |                    | 1 1                                    | N=HNO <sub>3</sub><br>S=H <sub>2</sub> SO <sub>4</sub> |                                         | =NaOH                                     |
| Aaron Sie                       | 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Quote #:     |        |                                         |                          | ij         |                  | ]           | i.                                      |                                         |               |      |               |       |         |       |       |                    |                                        |                                                        | iltered <b>O</b>                        | =H <sub>3</sub> PO <sub>4</sub><br>=Other |
| JOSH WHITE                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,              |              |        |                                         |                          | Sediment   | Potable<br>NPDES | :           | nta                                     |                                         |               |      |               |       |         |       |       |                    |                                        |                                                        | Remar                                   | Wall-twell-renience and a second          |
| State where samples were        | collected: For C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compliance:    |              |        |                                         | o                        | edi        | Potable<br>NPDES | ı           | ပ္ပ                                     | ~                                       | \( \cdot \)   |      |               |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
| VA                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes 🗆          | No ဩ         |        |                                         | sit                      | S          | ŭ Z              | .           | ğ                                       | Lead                                    | 78/           | ĺ    |               |       |         |       |       |                    |                                        | 1                                                      |                                         |                                           |
| Samp                            | le Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Colle        | ected  | Grab                                    | Composite                | Soil 🛚     | Water            | Other:      | Total # of Containers                   |                                         | >             |      |               |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Date         | Time   | ] ច                                     | ပြိ                      | တိ         | Š                | <u>8</u>    | ို                                      |                                         |               | L    |               |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
| SBOIA1801                       | 109181115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 11/09/18     | 1115   | Х                                       |                          |            |                  |             | 5                                       | X                                       | X             |      |               |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
| SB0213011                       | 09181140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 11/04/18     | 1140   | Χ                                       |                          |            |                  |             | 5                                       | X                                       | K             |      |               |       |         |       |       |                    |                                        | -                                                      | <del>Policies de la constanti</del>     |                                           |
| SB04 10511                      | 5918 1035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 11/09/18     | 1035   | X                                       |                          |            |                  |             | 5                                       | X                                       | X             |      |               |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
| SB05 0951100                    | 2181100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 11/09/18     | 1100   | X                                       |                          |            |                  | 1           | 5                                       | X                                       | X             |      |               |       |         |       |       |                    |                                        |                                                        | *************************************** |                                           |
| TEN BUMES                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |              |        |                                         |                          |            |                  |             |                                         |                                         | X             |      |               |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |        |                                         |                          |            |                  |             |                                         |                                         |               |      |               |       |         |       |       |                    | mt                                     |                                                        |                                         | Maria Maria                               |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |        |                                         |                          |            |                  |             |                                         |                                         |               |      |               |       |         |       |       |                    |                                        | -CV-d                                                  | -                                       |                                           |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |        |                                         |                          |            |                  | 1           |                                         |                                         |               |      |               |       |         |       |       |                    |                                        | · · · · · · · · · · · · · · · · · · ·                  |                                         |                                           |
|                                 | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |              |        |                                         |                          |            |                  |             |                                         |                                         |               |      |               |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
| - 1                             | William Willia |                |              |        |                                         |                          |            |                  | 1           |                                         |                                         |               |      |               |       |         |       |       |                    |                                        |                                                        |                                         |                                           |
| Turnarour                       | nd Time (TAT) Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quested (      | please circl | e)     | Relinq                                  | uishedk                  | ру         | ~ ^              | M           |                                         |                                         | Date          |      | Time          |       | Receiv  | ed by |       |                    |                                        |                                                        | Date                                    | Time                                      |
| /                               | ndard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ru             |              |        | 9                                       | <u> Lo</u>               | 70         | $\leq$           | Llu         | T                                       |                                         | Date          |      | 153           |       | <u></u> |       |       |                    |                                        |                                                        |                                         |                                           |
| (Rush T <del>AT is subj</del> e | ct to laboratory approval a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and surcharge. | )            |        | Relifica                                | dished                   | 200        |                  | _           |                                         |                                         | Date          |      | Time          | - 1   | Receiv  | ed by |       |                    |                                        |                                                        | Date                                    | Time                                      |
| Requested TAT in b              | ulejnose dave:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |        | Reling                                  | uished b                 | <u> </u>   |                  | <u></u>     |                                         |                                         | ///2/<br>Date | 10   | 14)<br>Time   |       | Desein  |       |       |                    | ······································ |                                                        |                                         |                                           |
| requested (A) iii b             | usiness days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |              |        | remiqu                                  | aloned L                 | <i>,</i> y |                  |             |                                         |                                         | Date          |      | rime          |       | Receiv  | ea by | -     | Percentage Percent | NAMES OF TAXABLE PARTY.                |                                                        | Date                                    | Time                                      |
| E-mail address: 🗷               | siegel@ enva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | llunce C       | ΩMΩ          |        | Relinqı                                 | uished b                 | бу         |                  |             |                                         |                                         | Date          |      | Time          |       | Receive | ed by |       |                    |                                        |                                                        | Date                                    | Time                                      |
|                                 | Package Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |        |                                         |                          |            |                  |             |                                         |                                         |               |      |               |       | İ       | ĺ     |       |                    |                                        |                                                        |                                         | 1                                         |
| Type I (EPA Le                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type VI (R     | Saw Data (   | aniv)  | Relinqu                                 | uished b                 | у _        |                  |             | *************************************** |                                         | Date          |      | Time          |       | Receive | ed by | n     |                    |                                        |                                                        | Date                                    | Time                                      |
| Equivalent/non                  | -CLP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type VI (IV    | law Dala C   | Jilly) |                                         | on state of the state of |            |                  |             | No. work to the storm                   | *************************************** | -             |      |               |       |         |       | 11    | w                  | 4                                      | ·                                                      | 11/13/18                                | 1050                                      |
| Type III (Reduc                 | ed non-CLP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NJ DKQP        | TX T         | RRP-13 |                                         |                          |            | EDD Re           | quirec      | 1? Y                                    | /es                                     | No            |      |               |       |         |       |       |                    |                                        | ial Carrie                                             |                                         |                                           |
|                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |              |        |                                         |                          |            | format: _        | /140/1      | 100/5                                   |                                         |               |      |               |       | UP      | 'S    |       | FedE:              | .x                                     | ★ Other                                                |                                         |                                           |
| NYSDEC Cate                     | gory A or B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MA MCP         | CT R         | .CP    |                                         |                          |            | cific QC         |             |                                         |                                         |               |      |               | 1     | l       | Ter   | npera | ature i            | upon i                                 | receipt                                                | 3.8                                     | °C                                        |

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • FOR HELP COMPLETING FORM CHECK OUT https://www.eurofinsus.com/coc The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client. Page 17 of 20

(If yes, indicate QC sample and submit triplicate sample volume.)



Lancaster Laboratories Environmental

### Sample Administration Receipt Documentation Log

Doc Log ID:

233134

Group Number(s): 2008831

Client: Environmental Alliance, Inc.

**Delivery and Receipt Information** 

**Delivery Method:** 

Fed Ex

Arrival Timestamp:

11/13/2018 10:50

Number of Packages:

1

Number of Projects:

2

State/Province of Origin:

<u>VA</u>

**Arrival Condition Summary** 

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

**Custody Seal Present:** 

Yes

Sample Date/Times match COC:

Yes

**Custody Seal Intact:** 

Yes

VOA Vial Headspace ≥ 6mm:

N/A

Samples Chilled:

Yes

Total Trip Blank Qty:

See Below

2

Paperwork Enclosed: Samples Intact:

Yes Yes Trip Blank Type: Air Quality Samples Present:

No

No

Missing Samples:

No

Extra Samples: Discrepancy in Container Qty on COC:

No

Trip Blank Type(s): 1 5ml Methanol, 1 Sodium Biosulfate

Unpacked by Nicole Reiff (25684) at 15:09 on 11/13/2018

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler # Thermometer ID

32170023

Corrected Temp 3.8

Therm. Type IR

Ice Type Wet

Ice Present?

Ice Container Bagged

Elevated Temp? Ν



**BMQL** 

ppb

basis

Dry weight

parts per billion

as-received basis.

### **Explanation of Symbols and Abbreviations**

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

| С        | degrees Celsius                       | MPN                       | Most Probable Number                                                                                                                                             |
|----------|---------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cfu      | colony forming units                  | N.D.                      | non-detect                                                                                                                                                       |
| CP Units | cobalt-chloroplatinate units          | ng                        | nanogram(s)                                                                                                                                                      |
| F        | degrees Fahrenheit                    | NTU                       | nephelometric turbidity units                                                                                                                                    |
| g        | gram(s)                               | pg/L                      | picogram/liter                                                                                                                                                   |
| IU       | International Units                   | RL                        | Reporting Limit                                                                                                                                                  |
| kg       | kilogram(s)                           | TNTC                      | Too Numerous To Count                                                                                                                                            |
| L        | liter(s)                              | μg                        | microgram(s)                                                                                                                                                     |
| lb.      | pound(s)                              | μL                        | microliter(s)                                                                                                                                                    |
| m3       | cubic meter(s)                        | umhos/cm                  | micromhos/cm                                                                                                                                                     |
| meq      | milliequivalents                      | MCL                       | Maximum Contamination Limit                                                                                                                                      |
| mg       | milligram(s)                          |                           |                                                                                                                                                                  |
| <        | less than                             |                           |                                                                                                                                                                  |
| >        | greater than                          |                           |                                                                                                                                                                  |
| ppm      | aqueous liquids, ppm is usually taken | to be equivalent to milli | kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas. |

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.



### **Data Qualifiers**

| Qualifier      | Definition                                                                                                 |
|----------------|------------------------------------------------------------------------------------------------------------|
| С              | Result confirmed by reanalysis                                                                             |
| D1             | Indicates for dual column analyses that the result is reported from column 1                               |
| D2             | Indicates for dual column analyses that the result is reported from column 2                               |
| E              | Concentration exceeds the calibration range                                                                |
| K1             | Initial Calibration Blank is above the QC limit and the sample result is ND                                |
| K2             | Continuing Calibration Blank is above the QC limit and the sample result is ND                             |
| K3             | Initial Calibration Verification is above the QC limit and the sample result is ND                         |
| K4             | Continuing Calibration Verification is above the QC limit and the sample result is ND                      |
| J (or G, I, X) | Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)      |
| Р              | Concentration difference between the primary and confirmation column >40%. The lower result is reported.   |
| P^             | Concentration difference between the primary and confirmation column > 40%. The higher result is reported. |
| U              | Analyte was not detected at the value indicated                                                            |
| V              | Concentration difference between the primary and confirmation column >100%. The reporting limit is raised  |
|                | due to this disparity and evident interference.                                                            |
| W              | The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.                              |
| Z              | Laboratory Defined - see analysis report                                                                   |

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.