RESULTS SHEET

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

					Incrementa	l Hazard
Indoor	Indoor	Risk-based		Final	risk from	quotient
exposure	exposure	indoor	Soil	indoor	vapor	from vapor
soil	soil	exposure	saturation	exposure	intrusion to	intrusion to
conc.,	conc.,	soil	conc.,	soil	indoor air,	indoor air,
carcinogen	noncarcinogen	conc.,	C_{sat}	conc.,	carcinogen	noncarcinogen
(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(unitless)	(unitless)
NA	NA	NA	3.70E+05	NA	1.7E-07	NA

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

END

SL-ADV Version 3.0; 02/03	CALCULATE RISI	K-BASED SOIL CO	NCENTRATION (en	ter "X" in "YES" box)											
		YES		1											
Reset to Defaults	CALCULATE INC	REMENTAL RISKS	OR FROM ACTUAL SO	- DIL CONCENTRATION	(enter "X" in "YES	" box and initial soil	conc. below)								
		YES	Х	1	. (,								
	ENTER	ENTER		1											
	Chemical	Initial soil													
	CAS No.	conc.,													
	(numbers only,	C _R													
	no dashes)	(μg/kg)			Chemica										
	71432	1.42E+00]		Benzene										
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	1				
MORE		Depth		Depth below	Totals mu	st add up to value of		Soil							
. ↓	Average	below grade to bottom	Depth below	grade to bottom of contamination.	Thickness	Thickness of soil	Thickness of soil	stratum A SCS		User-defined stratum A					
	soil	of enclosed	grade to top	(enter value of 0	of soil	stratum B,	stratum C,	soil type		soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,		(Enter value or 0)		OR	permeability,					
	Ts	L_F	Lt	L _b	h _A	h _B	h _C	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	_	(cm ²)					
	15	15.24	60.96	427	60.96	0		SL	7 :						
		10.21	00.00	121	00.00			ÜL.		l.					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
Ψ.	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic
	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,
	Lookup Soil	ρ_b^A	n ^A	porosity, θ_w^A	carbon fraction, $f_{oc}^{\ A}$	soil type	bulk density, ρ _b ^B	n ^B	θ_w^B	f _{oc} ^B	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
				porosity,	carbon fraction,	soil type	bulk density,							porosity, θ _w ^C (cm ³ /cm ³)	
	Lookup Soil	ρ_b^A	n ^A	porosity, θ_w^A	carbon fraction, $f_{oc}^{\ A}$	soil type	bulk density, ρ _b ^B	n ^B	θ_w^B	f _{oc} ^B	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters	ρ _b ^A (g/cm ³)	(unitless)	porosity, θ_w^A (cm^3/cm^3) 0.103	carbon fraction, foc A (unitless)	soil type Lookup Soil Parameters	bulk density, ρ _b ^B (g/cm ³)	n ^B	θ _w ^B (cm³/cm³)	f _{oc} ^B	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
MORE	Lookup Soil Parameters	ρ _b ^A (g/cm ³)	n ^A (unitless)	porosity, θ_w^A (cm ³ /cm ³)	carbon fraction, $f_{oc}^{ A}$ (unitless)	soil type	bulk density, ρ _b ^B	n ^B	θ_w^B	f _{oc} ^B	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
MORE ↓	Lookup Soil Parameters SL ENTER Enclosed space	(g/cm³) 1.62 ENTER Soil-bldg.	n ^A (unitless) 0.387 ENTER Enclosed space	porosity,	carbon fraction, foc A (unitless) 0.002 ENTER Enclosed	soil type Lookup Soil Parameters ENTER Floor-wall	bulk density, Pb (g/cm³) ENTER Indoor	n ^B (unitless)	θ _w ^B (cm³/cm³) ENTER Average vapor flow rate into bldg	f _{oc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor	(g/cm³) 1.62 ENTER Soil-bldg. pressure	n ^A (unitless) 0.387 ENTER Enclosed space floor	porosity,	carbon fraction, foc. (unitless) 0.002 ENTER Enclosed space	soil type Lookup Soil Parameters ENTER Floor-wall seam crack	bulk density, pb s (g/cm³) ENTER Indoor air exchange	(unitless)	ew B (cm³/cm³) ENTER Average vapor flow rate into bldg OR	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness,	Pb (g/cm³) 1.62 ENTER Soil-bldg. pressure differential,	n ^A (unitless) 0.387 ENTER Enclosed space floor length,	porosity, e,r (cm²/cm²) 0.103 ENTER Enclosed space floor width,	carbon fraction, foc A (unitless) 0.002 ENTER Enclosed space height,	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width,	bulk density, p, p, gram (g/cm³) ENTER Indoor air exchange rate,	(unitless)	(cm³/cm³) ENTER Average vapor flow rate into bldg OR eave blank to calcu	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor	(g/cm³) 1.62 ENTER Soil-bldg. pressure	n ^A (unitless) 0.387 ENTER Enclosed space floor	porosity,	carbon fraction, foc. (unitless) 0.002 ENTER Enclosed space	soil type Lookup Soil Parameters ENTER Floor-wall seam crack	bulk density, pb s (g/cm³) ENTER Indoor air exchange	(unitless)	ew B (cm³/cm³) ENTER Average vapor flow rate into bldg OR	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness, L _{crack} (cm)	Pb ^A (g/cm³) 1.62 ENTER Soil-bldg. pressure differential, AP (g/cm-s²)	n^A (unitless) 0.387 ENTER Enclosed space floor length, L _B (cm)	porosity, ew cm²/cm²) 0.103 ENTER Enclosed space floor width, We (cm)	carbon fraction, foc^ (unitless) 0.002 ENTER Enclosed space height, H ₆ (cm)	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm)	bulk density, Pb (g/cm³) ENTER Indoor air exchange rate, ER (1/h)	(unitless)	enter a construction of the construction of th	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness, Lcrack	P _b A (g/cm³) 1.62 ENTER Soil-bldg. pressure differential, ΔP	n ^A (unitless) 0.387 ENTER Enclosed space floor length, L _B	porosity, 0, 0, 0 (cm³/cm³) 0.103 ENTER Enclosed space floor width, W _B	carbon fraction, foch (unitless) 0.002 ENTER Enclosed space height, H _B	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w	bulk density, p, b (g/cm³) ENTER Indoor air exchange rate, ER	(unitless)	enter Average vapor flow rate into bldg OR eave blank to calcu	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness, L _{crack} (cm)	Pb ^A (g/cm³) 1.62 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER	n^A (unitless) 0.387 ENTER Enclosed space floor length, L _B (cm)	porosity, ew cm²/cm²) 0.103 ENTER Enclosed space floor width, We (cm)	carbon fraction, foc (unitless) 0.002 ENTER Enclosed space height, Ha (cm) 304.9 ENTER	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm)	bulk density, Pb (g/cm³) ENTER Indoor air exchange rate, ER (1/h)	(unitless)	enter a construction of the construction of th	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness, L-crack (cm) 15.24 ENTER Averaging	P _b ^A (g/cm³) 1.62 ENTER Soil-bldg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging	n^A (unitless) 0.387 ENTER Enclosed space floor length, L _B (cm) 1829 ENTER	porosity,	carbon fraction, foc of the foctor of the f	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.0038 ENTER Target hazard	bulk density, Pb (g/cm³) ENTER Indoor air exchange rate, ER (1/h)	(unitless)	enter a construction of the construction of th	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness, L_crack (cm) 15.24 ENTER Averaging time for	P _b ^A (g/cm³) 1.62 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for	n^A (unitless) 0.387 ENTER Enclosed space floor length, L _B (cm) 1829 ENTER Exposure	porosity, e, " (cm²/cm²) 0.103 ENTER Enclosed space floor width, W _a (cm) 990 ENTER Exposure	carbon fraction, foc^ (unitless) 0.002 ENTER Enclosed space height, Hs (cm) 304.9 ENTER Target risk for	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.0038 ENTER Target hazard quotient for	bulk density, Pb (g/cm³) ENTER Indoor air exchange rate, ER (1/h)	(unitless)	enter a construction of the construction of th	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness, Lenek (cm) 15.24 ENTER Averaging time for carcinogens,	P _b ^Λ (g/cm³) 1.62 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens,	n^A (unitless) 0.387 ENTER Enclosed space floor length, L _B (cm) 1829 ENTER	porosity,	carbon fraction, foc of the foctor of the f	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.0038 ENTER Target hazard	bulk density, Pb (g/cm³) ENTER Indoor air exchange rate, ER (1/h)	(unitless)	enter a construction of the construction of th	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness, L_crack (cm) 15.24 ENTER Averaging time for	P _b ^A (g/cm³) 1.62 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for	n^A (unitless) 0.387 ENTER Enclosed space floor length, L _B (cm) 1829 ENTER Exposure duration,	porosity,	carbon fraction, foc on the control of the control	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.0038 ENTER Target hazard quotient for noncarcinogens,	bulk density, Pb (g/cm³) ENTER Indoor air exchange rate, ER (1/h)	(unitless)	enter a construction of the construction of th	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C
	Lookup Soil Parameters SL ENTER Enclosed space floor thickness, Lcrack (cm) 15.24 ENTER Averaging time for carcinogens, ATc	P _b ^A (g/cm³) 1.62 ENTER Soil-bldg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC}	n^ (unitless) 0.387 ENTER Enclosed space floor length, Ls (cm) 1829 ENTER Exposure duration, ED	porosity, e, " (cm²/cm²) 0.103 ENTER Enclosed space floor width, Wa (cm) 990 ENTER Exposure frequency, EF	carbon fraction, foc (unitless) 0.002 ENTER Enclosed space height, He (cm) 304.9 ENTER Target risk for carcinogens, TR	soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, W (cm) 0.0038 ENTER Target hazard quotient for noncarcinogens, THQ	bulk density, Pb (g/cm³) ENTER Indoor air exchange rate, ER (1/h)	(unitless)	enter a construction of the construction of th	f _{cc} ^B (unitless)	Lookup Soil	ρb ^C	n ^c	θ_{w}^{C}	f _{oc} ^C

Used to calculate risk-based soil concentration.

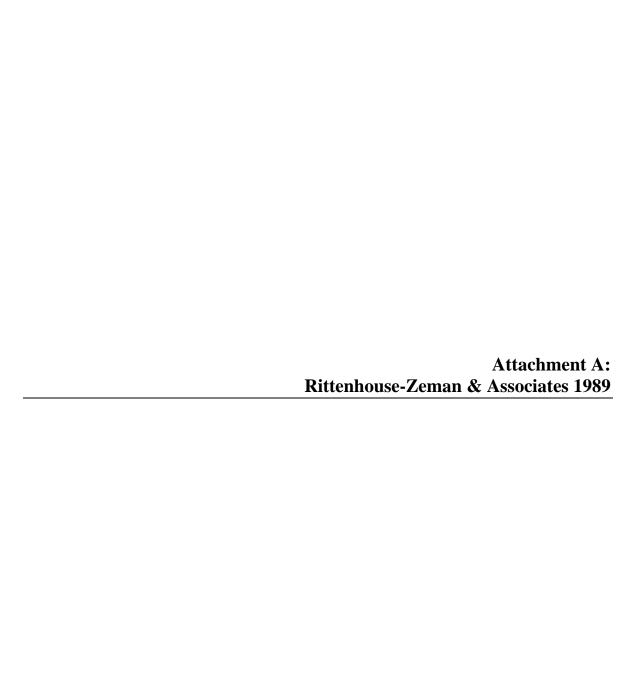
END

RESULTS SHEET

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor	Indoor	Risk-based		Final		emental k from	Hazard guotient
exposure	exposure	indoor	Soil	indoor		vapor	from vapor
soil	soil	exposure	saturation	exposure	intr	usion to	intrusion to
conc.,	conc.,	soil	conc.,	soil	ind	loor air,	indoor air,
carcinogen	noncarcinogen	conc.,	C_{sat}	conc.,	car	cinogen	noncarcinogen
(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(ui	nitless)	(unitless)
NA	NA	NA	3.70E+05	NA	7.	.0E-08	NA


MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

END

Attachments

CHEVRON U.S.A. SERVICE Station No.1122

Peace Portal & "G" Street Blaine, Washington

Prepared For

Chevron U.S.A. Inc.

W-6420

November, 1989

12/12/89

RITTENHOUSE-ZEMAN & ASSOCIATES, INC. Geotechnical & Environmental Consultants

1400 140th Avenue N.E. Bellevue, Washington 98005-4594 (206) 746-8020/FAX (206) 746-6364

12 December 1989

W-6420

Chevron U.S.A., Inc. P.O. Box 220 Seattle, Washington 98111

Attention:

Mr. Myron Smith

Subject:

Underground Storage Tank Removal and Excavation Summary Report

Chevron Service Station #1122

Peace Portal and "G" Street

Blaine, Washington

Gentlemen:

We are pleased to present herein a copy of the above referenced report. This summary report presents our observations of underground storage tank removal procedures other excavations and related activities conducted at the project site. Verbal authorization for our participation in this project was provided by Mr. Myron Smith of Chevron U.S.A., Inc. We appreciate the opportunity to be of continuing service to Chevron U.S.A., Inc. Should you have any questions regarding this report, please call us at your earliest convenience.

Respectfully submitted,

RITTENHOUSE-ZEMAN & ASSOCIATES, INC.

Jon N. Sondergaard, P.G.

Senior Environmental Geologist

Underground Storage Tank Removal and Excavation Summary Report

Chevron Service Station #1122
Peace Portal and "G" Street
Blaine, Washington

Prepared for

Chevron U.S.A., Inc. P.O. Box 220 Seattle, Washington 98111

Prepared by

Rittenhouse-Zeman & Associates, Inc.

1400 140th Avenue N.E. Bellevue, Washington 98005

> December, 1989 **W-6420**

TABLE OF CONTENTS

W-6420

			Б
1.0	SUN	MMARY	Page
2.0	INT	MMARYRODUCTION	1
3.0	NEV	V UST EXCAVATION	3
4.0	UST	REMOVAL OBSERVATIONS	3
	4.1	REMOVAL OBSERVATIONS	5
	4.2	Gasoline Underground Storage Tanks	5
	4.3	Waste Oil Tank	6
5.0	PUM	PALLIC LIGHT RELIGION	7
6.0	HYDI	RAULIC HOIST REMOVAL	8
7.0	MON	IITORING WELL INSTALLATION	9
8.0	BIO-\	VENTING SYSTEM INSTALLATION	9
9.0	CON	CLUSIONS AND RECOMMENDATIONS	10
Figure Figure Table Table Apper	e e e ndix A	1	· 1

UNDERGROUND STORAGE TANK REMOVAL AND EXCAVATION SUMMARY REPORT CHEVRON SERVICE STATION #1122 PEACE PORTAL AND "G" STREET BLAINE, WASHINGTON

1.0 SUMMARY

The following report presents the results of our observation, sampling and analyses performed at the above referenced site in association with recent remodeling and underground storage tank (UST) removal activities. A brief summary of the significant findings outlined in this report are presented below:

- Soil samples were collected from the sidewalls and bottom of the new UST excavation located behind (east) the existing retail building. Analysis of these soil samples indicated BTEX concentrations below the method detection limits and TPH concentrations below 198 mg/kg except for sample S-4. Sample S-4 was collected from the west sidewall of the excavation, about 7 feet west of the heating fuel tank location, and exhibited a TPH concentration of 306 mg/kg.
- Soil samples collected from the heating fuel tank excavation consisted of a sidewall composite sample and a bottom sample. The sidewall composite sample (S-15) exhibited a TPH concentration of 361 mg/kg and the bottom sample (S-16) exhibited a TPH concentration of 36 mg/kg.
- Soil samples collected from the sidewalls of the excavation at the former gasoline UST location exhibited, upon analysis, TPH concentrations below 119 mg/kg and detectable concentrations of BTEX. Approximately 9,200 gallons of mixed fuel and water were removed from the excavation and disposed by ChemPro Environmental fo Bellingham, Washington.

- Soil samples were collected from the bottom of the waste oil tank (S-35) and from obviously impacted soil at the northeast corner of the excavation (S-34). Soil sample S-35 exhibited detectable concentrations of TPH (32.2 mg/kg) and total chromium (24.0 mg/kg) and concentrations of total organic halogens, total lead and PCB below the method detection limits. Soil sample S-34 exhibited a TPH concentration of 3,146 mg/kg.
- Soil samples were collected from beneath each pump island (S-20 and S-22) and beneath the drive through areas (S-19 and S-21). The soil samples from beneath the pump islands exhibited TPH concentrations of 63 mg/kg (S-22) and 2,813 mg/kg (S-20) with detectable concentrations of BTEX. Soil sample S-21 from the center drive through exhibited a TPH concentration of 3,392 mg/kg and detectable concentrations of BTEX. Soil sample S-19, located beneath the west pump island near the west property line, exhibited TPH and BTEX concentrations below the method detection limits.
- Soil samples collected from the base and sidewalls of the hydraulic hoist excavation exhibited TPH concentrations below 74.3 mg/kg except soil sample S-25 located at the south end of the excavation. Soil sample S-25 exhibited a TPH concentration of 2,906 mg/kg.
- A monitoring well was installed at the east end of the former gasoline UST excavation, to monitor surface water or fugitive product migration into the former UST location.
- An in-situ, bio-venting system was installed in the area of the pump islands, drive throughs and former gasoline UST excavation to remediate residual petroleum hydrocarbons remaining in soil at these locations.
- Approximately 100 to 200 cubic yards of excavated soil containing detectable concentrations of petroleum hydrocarbons was transported to Fife Sand and Gravel of Tacoma, Washington for treatment and disposal. Approximately 150 cubic yards of excavated soil containing detectable

concentrations of waste oil and hydraulic fluid were transported to the Kitsap County Landfill for disposal.

This summary is presented for introductory purposes and should only be used in conjunction with the full text of this report. The project description, site conditions, analytical techniques and observations are presented within the remainder of this report.

2.0 INTRODUCTION

This report was prepared to summarize our activities performed at Chevron Service Station #1122 in Blaine, Washington. Rittenhouse-Zeman & Associates, Inc. (RZA) activities at the site began on 4 October 1989 and our last site visit occurred on 16 November 1989. We visited the site five times within this period and the length of the visits ranged from a few hours to several days.

Our first site observation activities occurred on 4 and 5 October 1989. During this time an excavation for new underground fuel storage tanks (UST) was being accomplished. This excavation is located to the east of the retail building's northeast corner (see Figure 1). Our objectives during this activity were to obtain soil samples from the sidewalls and bottom of the excavation for submittal to an analytical laboratory for quantification of petroleum hydrocarbon concentrations, to observe and, using field screening methods, possibly delineate any petroleum hydrocarbon impacted soils uncovered during the excavation and to report our observations and the results of the chemical analysis to Chevron U.S.A., Inc.

3.0 NEW UST EXCAVATION

When we arrived at the site on the morning of 4 October 1989, the contractor had just begun excavating a small area, (3x3x3) adjacent to the retail building. At this time, no noticeable product odor nor staining was evident in the soils comprising the excavation sidewalls. The upper 12 to 18 inches of the excavation revealed fill containing debris such as bricks, bottles and various sticks or roots.

The following day, 5 October 1989, we arrived at the site in the morning and approximately three-fourths of the excavation had been completed. Petroleum hydrocarbon impacted soils removed from the excavation were loaded directly into

trucks and transported to Fife Sand and Gravel of Tacoma, Washington for disposal. The soils removed consisted of an upper fill, a lower sandy silt, and near the base of the excavation, a silty clay. The total depth of the excavation ranged from approximately 12 feet to 16 feet below the existing ground surface. The upper layer of fill was 1 to 3 feet thick, the middle layer of sandy silt was 5 to 6 feet thick, and the lower silty clay extended below these depths to the base of the excavation.

We observed the remaining excavation operation. A slight petroleum hydrocarbon odor was detected along with possible staining in the sidewall of the southwest corner of the excavation. This odor and staining appear to be limited to pockets within the fill soils at this corner. The heating oil tank was located approximately 7 feet west of the west excavation sidewall. No other obviously stained soil or petroleum hydrocarbon odors were detected elsewhere within the excavation.

Soil samples were obtained from the four sidewalls and the bottom of the excavation at the approximate locations shown on Figure 1. These samples were field tested with an organic vapor meter (OVM) to evaluate relative petroleum hydrocarbon levels within the headspace of each sample jar. This was accomplished by filling a clean jar about half full of soil, covering it with tin foil, agitating the jar, and then inserting the OVM's probe through the foil, to obtain a reading. Additionally, soil samples submitted for analysis were placed in laboratory prepared jars and transported in a chilled cooler under chain of custody procedures to an analytical laboratory for testing. The samples were tested for benzene, toluene, ethylbenzene, and xylene (BTEX) by EPA Method 8020 and for total petroleum hydrocarbons (TPH) by EPA Method 418.1.

OVM head space measurements for soil samples collected from this excavation ranged from 0 to 180 parts per million (ppm). Detectable petroleum hydrocarbon vapor concentrations were exhibited in soil samples obtained from the upper excavation sidewall closest to the retail building. All other soil samples exhibited no detectable petroleum hydrocarbon vapor concentrations using the field headspace screening methods. Analytical laboratory testing indicated that all samples associated with this excavation exhibited BTEX concentrations below the method detection limits of 0.05 mg/kg. Analytical laboratory results for TPH ranged from below the method detection limit of 5 ppm to 306 ppm. The highest TPH concentration indicated was associated with

the upper sidewall closest to the retail building (Sample S-4). Lower sidewall and base samples exhibited TPH concentrations ranging from below the method detection limits as high as 9.1 ppm. Analytical test results from the new tank excavation are summarized in Table 1.

Following the excavation activities, field observations and laboratory testing it appears that the new tank excavation is generally free of petroleum hydrocarbon contamination. Exceptions to this appear to be associated with the upper fill soils primarily near the retail building. These fill soils were 1 to 3 feet in thickness. One sample taken in this fill adjacent to the building exhibited TPH concentrations above current WDOE action levels (200 ppm).

4.0 UST REMOVAL OBSERVATIONS

Our second period of on-site work began on 16 October 1989 and ended on 19 October 1989. During this time, the heating oil tank was removed, the old fuel tanks were removed or abandoned in place, the pump island and associated paving were removed, the hydraulic hoists were removed, and the waste oil tank was removed. When we arrived at the site, the new gasoline tanks were in-place in the previously accomplished excavation located behind the building and washed rock backfill was level with the upper surface of the new tanks. We performed soil sampling and analyses at excavations which previously contained underground heating fuel tank, gasoline tanks, waste oil tank, pump island piping, and hydraulic lift hoists. Analytical test results on soil samples collected from these excavations are summarized in Table 2.

4.1 Heating Fuel Tank

We observed the removal of the 550-gallon heating oil tank and obtained sidewall composite and excavation base samples (S-15 and S-16) from this excavation at the approximate locations shown on Figure 2. Petroleum hydrocarbon odor and stained soil were detected in the upper 1 foot of fill located along the south and west sides of the excavation. The remaining sidewalls, base, and sandy tank backfill were observed to be free of odor and staining. OVM field measurements indicated non-detectable concentrations of petroleum hydrocarbon vapors in the sidewall and base samples which were also analyzed for TPH using EPA Method 418.1. TPH concentrations of soil samples collected from this excavation ranged from 36 ppm (S-16) to 361 ppm (S-15).

The original sand backfill, which was observed to be free of petroleum hydrocarbon impacts, was returned to the excavation, which remained partially filled as of our 30 October 1989 site visit.

4.2 Gasoline Underground Storage Tanks

Four gasoline UST's were located to the north of the station building. The tanks consisted of one 3,000 gallon unleaded, one 7,500 gallon regular, one 8,000 gallon supreme and one 10,000 gallon regular. The pavement was removed in the vicinity of the four gasoline tanks along the northern edge of the property. Once the pavement was removed, pea gravel backfill was observed throughout the area. Strong petroleum hydrocarbon odors were detected along with visible staining of this fill. measurements for hydrocarbon vapors on the gravel fill using a OVM photoionization detector indicator vapor concentrations ranging from 50 to 300 ppm. One hundred to two hundred yards of gravel fill material from this excavation were hauled to Fife Sand and Gravel for landfarming and disposal. A composite sample of this fill was collected and analytical laboratory testing (TPH by EPA SW-846/8015 and BTEX by EPA SW-846/8020) indicated a TPH concentration of 119 ppm and BTEX concentrations less than 10 mg/kg. Analytical laboratory testing of samples obtained from the sidewalls indicated TPH concentrations ranging from below the method detection limit of 10 ppm to 141 ppm. BTEX concentrations ranged from below the method detection limit (less than 0.5 mg/kg) to 16.0 mg/kg. Soil samples S-28 and S-29 collected from this excavation were not submitted for analysis.

The 3,000-gallon and a 10,000-gallon gasoline tanks were removed, while the 7,500-gallon and the 8,000-gallon tank were abandoned in place. According to the contractor, the underground storage tanks removed from the site were decommissioned and prepared for safe transport from the site prior to our arrival. The 7,500 gallon tank and the 8,000 gallon tank were abandoned in place because the south ends of both tanks were located beneath the foundation of existing station structures. The two tanks abandoned in place were filled with a lean concrete mix. Those portions of the two tanks exposed appeared to be in good shape but they could not be fully examined. Both tanks removed from the ground appeared to have maintained their structural integrity with no holes or cracks readily observable. The 10,000-gallon fiberglass tank could not be fully examined as it was broken up during its removal.

Once the tanks were removed from the excavation, we observed approximately 0.1 feet of free phase petroleum hydrocarbons on water accumulated in the tank excavation. Before backfilling the excavation, all free product and associated standing water was removed and hauled off-site for treatment and disposal by Chempro, Inc. Approximately 9,200 gallons of mixed water and some product was removed.

In our opinion, the water present in the tank excavation represented predominantly surface water infiltration which had accumulated around the tanks over time. The native soils comprising the excavation sidewalls consisted of relatively low permeability clayey silty and clay which are not likely to transmit significant qualities of groundwater. In our opinion, the relatively low permeability of the native soils would limit migration of water and fugitive product, if any, which had accumulated in the tank excavation.

4.3 Waste Oil Tank Excavation

An approximately 500 gallon waste oil tank situated near the building's southeast corner was removed. Petroleum hydrocarbon odors and stained soil were noticed in the original backfill associated with the tank and near the building's southeast corner. Field measurements using the OVM indicated petroleum hydrocarbon vapor concentrations for the base, west, south and east sidewalls to be in the 0-20 ppm range. The northern sidewall exhibited petroleum hydrocarbon vapor concentrations, as measured with the OVM, ranging from 50 ppm to 300 ppm.

Analytical testing using EPA Method 418.1 indicated a TPH soil concentration of 150 ppm in a composite sample of the stockpiled soils removed from around the waste oil tank. Also detected in the sample from this stockpile were total organic halogen concentrations less than the 10 mg/kg detectable limit and PCB concentrations less than the 1 mg/kg detection limit. A composite soil sample collected from the base of the waste oil tank excavation exhibited a TPH concentration of 32.2 mg/kg, a total organic halogen content of less than 10 mg/kg, a total chromium concentration of 24 mg/kg, a total lead concentration of less than 0.5 mg/kg, and PCB concentrations less then the method detection limit of 1mg/kg. Soil sample S-34, collected from obviously impacted soil located in the northeast corner of the waste oil tank excavation, exhibited a TPH concentration of 3,146 mg/kg. Soil sample S-36 collected from this excavation was not

submitted for analysis. Approximately 20 cubic yards of soil removed from the waste oil tank excavation was hauled to Kitsap County Landfill for disposal.

5.0 Pump Island Excavation

The pump islands and associated paved drive areas located west of the station building were also removed. Underlying the pavement was a gravel fill overlying at least 3 feet of Both the gravel base and underlying fill exhibited petroleum debris-laden silty fill. hydrocarbon odors and staining. The fill soils were underlain by native silt and clay deposits. Surficial sampling was performed (S-19, S-20, S-21, and S-22) and both field screening and laboratory testing was conducted. Field vapor measurements of between 50 ppm and 250 ppm were encountered using the OVM. Analytical laboratory testing showed TPH concentrations ranging from below the detectable level of 10 ppm to 3,392 ppm. The lowest concentration was from a sample (S-19) taken at the far western edge of the site. The highest concentration was from the central drive area between the two pump islands (S-21). Soil sample S-20 collected from beneath the west pump island exhibited a TPH concentration of 2,831 mg/kg. BTEX concentrations ranged from below the method detection limits of 0.05 mg/kg to 18.2 mg/kg. TPH analyses were accomplished using modified EPA Method 8015 and BTEX analyses using EPA Method 8020.

Due to the porous nature of the fill soil, RZA recommended leaving in-place much of the petroleum hydrocarbon impacted soils in the pump island area and installing a bioventing system in the pump island, drive through, and old tank excavation areas to accomplish in-situ remediation. In-situ remediation of petroleum hydrocarbon impacted soils is well suited to this area because the fill soil is porous, the primary petroleum hydrocarbons present is gasoline and the proximity of the impacted soils to structural footings makes removal of the soils impractical.

We returned to the site on 30 October 1989 to sample two stockpiles of soils related to trenching efforts for the utility lines, the product lines, and the bio-venting system. We obtained two composite samples from the two stockpiles for analytical laboratory analysis. This analysis of the two samples showed TPH concentrations of 561 ppm and 806 ppm (TPH by 418.1). Approximately 50 cubic yards of the soil was subsequently hauled to Kitsap County Landfill for disposal.

The bio-venting system was partially in-place and some of the trenches were backfilled. We observed portions of the installation activity for the bio-venting system. Installation of the system appeared to be adequate and the piping was, at this time, finished in the drive areas near the pump islands. The northern-most section of pipe along with the loop near the monitoring well were not yet in place. A description of the bio-venting system installation is presented subsequently.

6.0 Hydraulic Hoist Removal

We observed the removal of three hydraulic hoists from within the south end retail building. A remote fill for the waste oil tank was also located in the southeast corner of the retail building. Strong petroleum hydrocarbon odors and stained soils were encountered in the sand backfill associated with these hoists. Approximately 75 cubic yards of impacted soil were removed from the southern two-thirds of the building's interior. Field screening by the OVM indicated hydrocarbon vapor concentrations at the base of the excavation ranging from 20 ppm in the north to 300 ppm in the south. Analytical laboratory analysis for TPH using EPA method 418.1 indicated soil concentrations ranging from 20.6 ppm to 2,906 ppm, with the highest concentration in the south (soil sample S-25).

Analytical laboratory analysis of a composite sample of the stockpiled soil removed from the interior of the building showed a TPH concentration of 10,003 ppm. The sample also exhibited a total halogen content below the detection limit of 10 mg/kg, a total chromium concentration of 9.3 mg/kg and a total lead concentration of 10.3 mg/kg. No PCB's were detected above the detection limit of 1 mg/kg. Soil excavated from the hoist area was hauled to the Kitsap County Landfill for disposal. Observation and field screening indicated no other visibly TPH impacted soil within the footprint of the building. The southeast corner could not be checked because the floor slab there remained in place.

7.0 MONITORING WELL INSTALLATION

A monitoring well was installed in the gasoline UST excavation near the abandoned 7,500-gallon gasoline tank (see Figure 2 for location). The well will be used to monitor for the presence of groundwater and residual free phase petroleum hydrocarbons in the former tank excavation. The monitoring well (MW-1) consists of a 4-inch diameter PVC

well assembly including 5 feet of slotted well screen (0.020 inch slot size) and about 7 feet of blank PVC riser. The well was constructed in the tank excavation prior to backfilling. A concrete-bentonite seal was installed at the surface and the well covered within a protective steel monument. We requested and received from the Washington State Department of Ecology (WDOE) a waiver from the Minimum Standards for Construction and Maintenance of Wells for this installation. A copy of the waiver approval is included in Appendix A and an as-built diagram of the well is shown on Figure 3.

8.0 BIO-VENTING SYSTEM INSTALLATION

The approximate location of the bio-venting system is shown on Figure 4. The bio-venting system is intended to remediate residual petroleum hydrocarbons remaining in shallow fill soil beneath the pump islands and drive through areas and pea gravel fill remaining in the former gasoline UST excavation.

The bio-venting system consists of 4-inch diameter, fabric-wrapped, flexible, perforated PVC pipe buried in shallow 1 to 2 feet deep trenches. The trenches containing the bio-venting system vent pipe connects to a blank 4-inch diameter PVC manifold pipe north of the retail building. The manifold pipe runs east-west towards the northeast corner of the site where it will connect to the blower/stack assemble. The blower stack assembly will be located adjacent to an existing light standard at the northeast corner of the property.

The manifold pipe will connect to a condensate tank which will collect free water entrained in the gas stream prior to emission from the exhaust stack. The bio-venting system will be driven by a 100 CFM regenerative blower capable of drawing a sustained vacuum comparable to 1 1/2 inches of mercury. Extracted petroleum hydrocarbon vapors will be emitted to the atmosphere via a 4-inch diameter, 15-feet tall PVC exhaust stack. The exhaust stack will be fitted within a MSA Toxguard combustible gas indicator which automatically monitors the off-gas concentrations. The Toxguard monitor will be set to automatically shut-down the bio-venting system should the emitted vapor concentrations exceed 20 percent of the lower explosive limit (LEL).

We are currently in the process of notifying the Northwest Air Pollution Agency (NWAPA) of the system installation and expect to receive their approved for system operation around the first fo December 1989. Installation of the blower/stack assembly is tentatively scheduled for the first two weeks in December 1989.

9.0 CONCLUSIONS AND RECOMMENDATIONS

Field observations and analytical testing indicate that soils containing elevated TPH concentrations remain in the vicinity of the west end of the heating fuel tank (beneath the existing building), the northeast corner of the waste oil tank excavation, the south end of the hydraulic hoist excavation, the west sidewall of the new tank excavation and beneath the pump islands. Analytical testing and field observations indicate soils remaining in the walls and bottom of the new tank excavation and the former tank excavation exhibit TPH concentrations less then 198 mg/kg.

Soil remaining beneath the pump islands and drive through exhibited TPH concentrations up to 3,392 mg/kg and detectable concentrations of BTEX. Soils remaining in the west and north portions of the former UST excavation also contain detectable BTEX concentrations.

Soil containing elevated petroleum hydrocarbon concentration and excavated from the pump island and gasoline UST excavations was transported to Fife Sand and Gravel of Tacoma, Washington for treatment and disposal. Soil containing elevated TPH concentrations and excavated from the hoist and waste oil tank excavations was transported to the Kitsap County Landfill for disposal. Approximately 300 to 350 cubic yards of soil was transported off-site for disposal.

A bio-venting system was installed in the area of the pump island, drive through and former UST excavation. The in-situ bio-venting system is designed to remediated gasoline impacted soils remaining in the subsurface at the site. We anticipate the bio-venting system will be fully operational in mid-December 1989.

Native soils at the site typically consist of relatively low permeability silt and clay. Field observations and testing indicate fugitive petroleum hydrocarbons generally have been retained within the permeable tank backfill enclosed by the relatively low permeability

native soil. No groundwater was observed in any of the excavations. In our opinion, water encountered in the former UST excavation consisted of surface water infiltration accumulated in the permeable gravel backfill around the tanks. Little or no groundwater seepage is expected from the shallow, native silt and clay soils observed elsewhere onsite.

We recommend a series of soil borings be accomplished around the perimeter of the property. The purpose of the borings would be to collect soil samples for analyses and confirm that no shallow groundwater exists beneath the site. Selected soil samples collected from the borings would be analyzed for petroleum hydrocarbons to evaluate if fugitive hydrocarbons have migrated to the property boundaries.

We also recommend that monitoring well MW-1 be measured for water and petroleum hydrocarbons on a quarterly basis. Monitoring of the off-gas concentrations from the bio-venting system should also be monitored quarterly, with weekly recording of the Toxguard monitor LEL measurements, if possible.

We estimate that bio-venting of the subsurface should significantly reduce petroleum hydrocarbon concentrations within approximately on year of continuous operation. Periodic measurement and recording of the bio-venting system off-gas concentrations will help to refine this estimate. Once system off-gas concentrations are reduced consistently to below 2 percent LEL, soil samples should be collected from the pump island/drive through and former UST excavation area, and analyzed for petroleum hydrocarbon concentrations to evaluate the progress of the remediation.

We appreciate the opportunity to be of continued service to Chevron U.S.A. Inc. Should you have any questions regarding this report, please call us at your earliest convenience.

Respectfully submitted,

RITTENHOUSE-ZEMAN & ASSOCIATES, INC.

Jóhn Coleman

Environmental Geologist

Jon N. Sondergaard, P.G.

Senior Environmental Geologist

Kurt W. Groesch, P.E.

Associate

JC:cao1

W-6420

Table 1. Summary of Analytical Test Results on Soil

Collected from the New Tank Excavation

Volatile Aromatic Concentrations in mg/kg** Sample No. Depth (ft) TPH (mg/kg)* Benzene Toluene Ethyl benzen Xylenes s-1 0-3 86.8 <0.05 <0.05 <0.05 <0.05 0-3 <0.05 <0.05 <0.05 <0.05 **S-2** 198.0 s-3 0-3 6.9 <0.05 <0.05 <0.05 <0.05 s-4 0-3 306.0 <0.05 <0.05 <0.05 <0.05 s-5 12 <5.0 <0.05 <0.05 <0.05 <0.05 <5.0 <0.05 S-6 12 <0.05 <0.05 <0.05 s-7 <5.0 <0.05 <0.05 <0.05 <0.05 12 <5.0 <0.05 <0.05 5-8 12 <0.05 <0.05 5-9 13 <5.0 <0.05 <0.05 <0.05 <0.05 S-10 15 <5.0 <0.05 <0.05 <0.05 <0.05 <5.0 <0.05 s-11 13 <0.05 <0.05 <0.05 S-12 15 <5.0 <0.05 <0.05 <0.05 <0.05 <5.0 <0.05 <0.05 <0.05 s-13 13 <0.05 S-14 15 9.1 <0.05 <0.05 <0.05 <0.05

Note: * = TPH analyses by EPA Method 418.1

** = BTEX analyses by EPA Method 8020

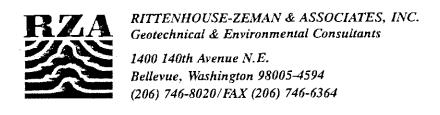

W-6420

Table 2. Summary of Analytical Test Results on Soil Collected from UST, Hoist and Pump Island Removal

			Heating Fuel	. Tank Excavati	ΩΠ		
		TPH by EPA	TPH by EPA			cnetrations in m	g/kg*
Sample No.	Depth (ft)	8015 (mg/kg)	418.1(mg/kg)	Benzene	Toluene	Ethyl benzene	Xylenes
s-15	3		361.0			w ## 10	
s-16	5	» m •	36.0		** ** **		
			Pump Island	Evenyation			
		TPH by EPA	TPH by EPA		comatic Con	cnetrations in mg	ı/ka*
Sample No.	. Depth (ft)	•	418.1(mg/kg)		Toluene	Ethyl benzene	Xylenes
s-19	0-1	<10.0		<0.05	<0.05	<0.05	<0.05
s-20	0-1-	2,813.0		0.88	3.79	2.08	179.00
s-21	0~1	3,392.0		<0.05	32.40	13.80	227.00
s-22	0-1	63.0		0.07	0.06	0.09	0.26
			1 3 6 h 11 - 3	· · · · · · · · · · · · · · · · · · ·			
		TPH by EPA	Lift Hoist E		comatic Con	cnetrations in mg	· / b=*
Sample No.	Depth (ft)		418.1(mg/kg)		Toluene	Ethyl benzene	Xylenes
S-18	2 Deptil (12)	acis (mg/kg)	33.9	Senzene	, ot delle	conyt benzene	Aytenes
s -23	4	~~~	74.3	~ w **		- - -	~ * *
s-24	3	~ ~	20.6	** ***		All the No.	~ ~ ~
s-25	3		2,906.0	~ ~ ~		n = = =	***
		TOU has EDA	Gasoline UST			enetrations in mo	
CI- No	Depth (ft)	TPH by EPA	TPH by EPA 418.1(mg/kg)		Toluene	netrations in mg Ethyl benzene	
Sample No. S-30	4	102.0	-10. ((iig/kg)	8.66	16.00	2.12	Xylenes 15.90
s-31	6	141.0		6.70	9.38	0.92	8.94
s-32	5	44.0	=	0.21	0.14	<0.05	0.17
s-33	5	<10.0	***	<0.05	<0.05	<0.05	<0.05
		TRU L. Eba		nk Excavation	.		
		TPH by EPA	•	Total Organic	lotat Lead	Total	PCB
Sample No.	•	8015 (mg/kg)		Halogens		Chromium	
s-34 s-35	3 8		3,146.0 32.2	<10.0	<0.5	24.00	<1.0
8*33	۵		32.2	V10.0	(0.5	24.00	\1.0
			Stockpiled So	oils			
		TPH by EPA	TPH by EPA	Total Organic	Total Lead	Total	PCB
Sample No.	Origin	8015 (mg/kg)	418.1(mg/kg)	Halogens		Chromium	
s-26	Hoist		10,003.0	<10.0	10.30	9.30	<1.0
\$-37	Waste Oil	* * *	150.0	<10.0	25 , 80	19.40	<1.0
		TPH by EPA	TPH by EPA	Volatile Ar	omatic Conc	netrations in mg,	/kg*
Sample No.	Origin	8015 (mg/kg)		Senzene -	Toluene	Ethyl benzene	Xylenes
s-38	Pump Islands	561.0	+ * *	0.23	2.30	4.60	59.30
ŝ- 39	Pump Islands	806.0		<0.05	2.94	3.75	18.20

Note: * = BTEX analyses by EPA Method 8020

APPENDIX A WELL CONSTRUCTION WAIVER

20 October 1989 W-6420

Washington State Department of Ecology 4250 150th Avenue Northeast Redmond, Washington 98052

Attention:

Mr. Jerry Liszak

Subject:

Request for Wavier of Construction Standards

Chapter 173-160 WAC 200 East Portal Drive Blaine, Washington

Mr. Liszak:

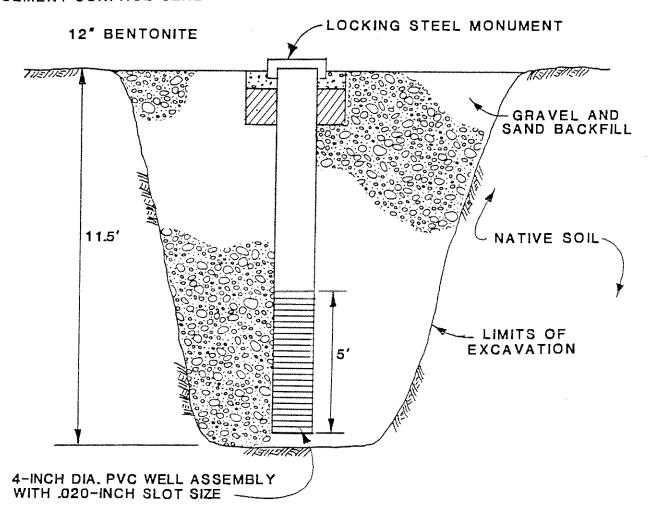
Rittenhouse-Zeman and Associates inc. (RZA) is writing this letter on behalf of Chevron U.S.A. Inc. to request a waiver from the Minimum Standards for Construction and Maintenance of Wells, Chapter 173-160 WAC. The proposed well which requires the waiver is to be constructed a the location of a former Chevron U.S.A. Inc. service station located at 200 East Portal Drive in Blaine, Washington. The site is located in Township 41 North, Range 1 East in the west-central portion of Section 31. The purpose of the well is to provide a monitoring well and possible extraction point for surface water infiltration which will accumulate in a former underground storage tank excavation which has been backfilled. The approximate proposed location of the well is shown on Figure 1.

Specifically, we are requesting a waiver from Part Three, Section 173-160-550 concerning the design and construction of well seals for resource protection wells. The proposed well construction would involve placing the four-inch diameter PVC well assembly into an excavation previously dug for removal of underground gasoline storage tanks. Placement of the well in the open excavation would prohibit sealing the annular space around the well with bentonite as required in WAC 173-160-550 subsection 2. Our proposed well construction components are shown in Figure 2. A bentonite-cement surface seal could be placed as shown and the area around the well

head and over the excavated surface covered with two inches of asphaltic concrete. In our opinion, this would inhibit downward infiltration of surface water around the well casing.

Your prompt attention to this request would be appreciated. The ability to construct a large diameter well within the excavation as backfilling occurs provides an immediate access point for monitoring and treatment of ground water beneath the site at a considerable cost savings to our client. The construction of this well is part of an ongoing characterization and remediation of the subject site.

If you have any questions regarding this waiver request, please do not hesitate to call us at your earliest convenience.


Respectfully submitted,

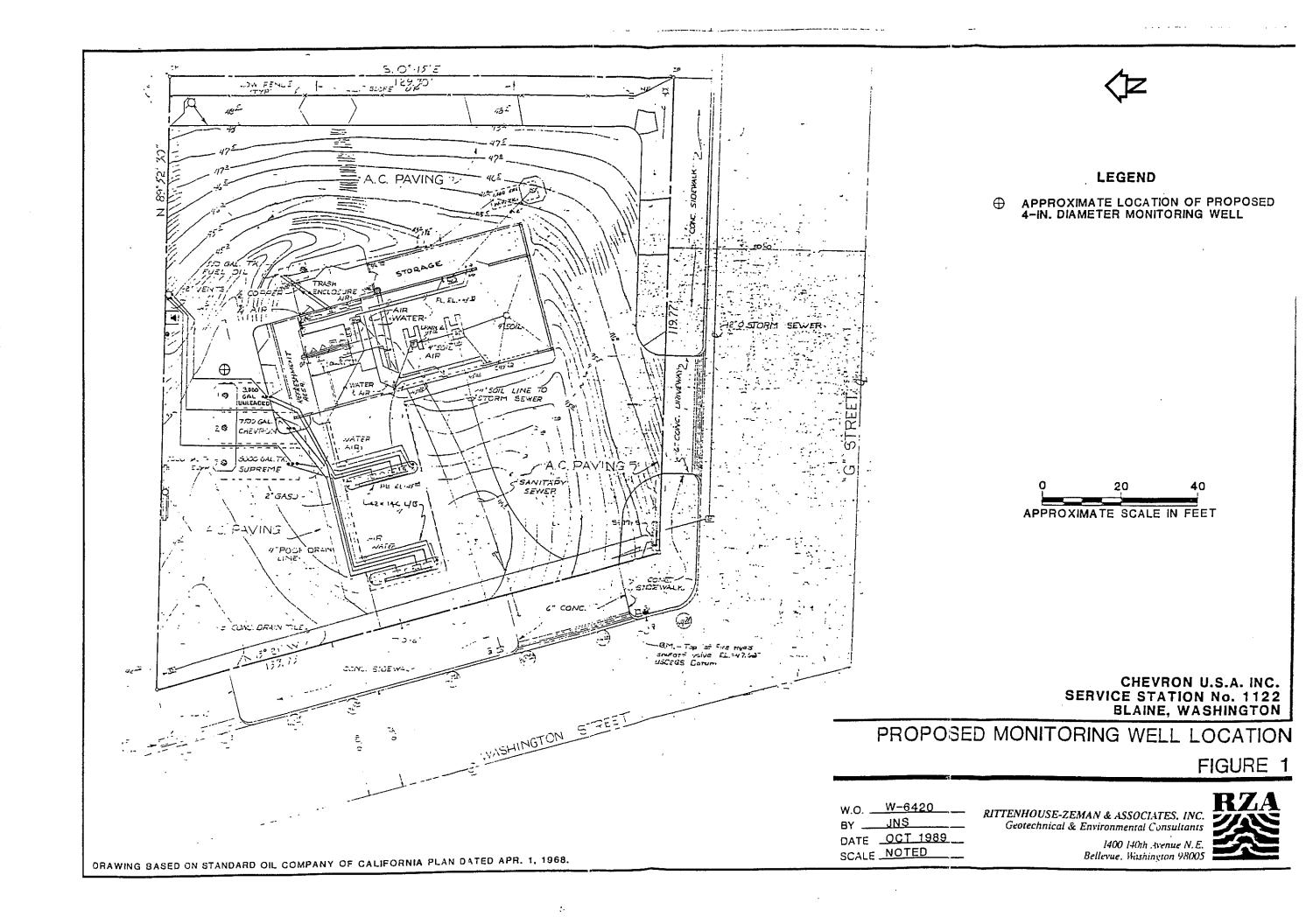
RITTENHOUSE-ZEMAN AND ASSOCIATES INC.

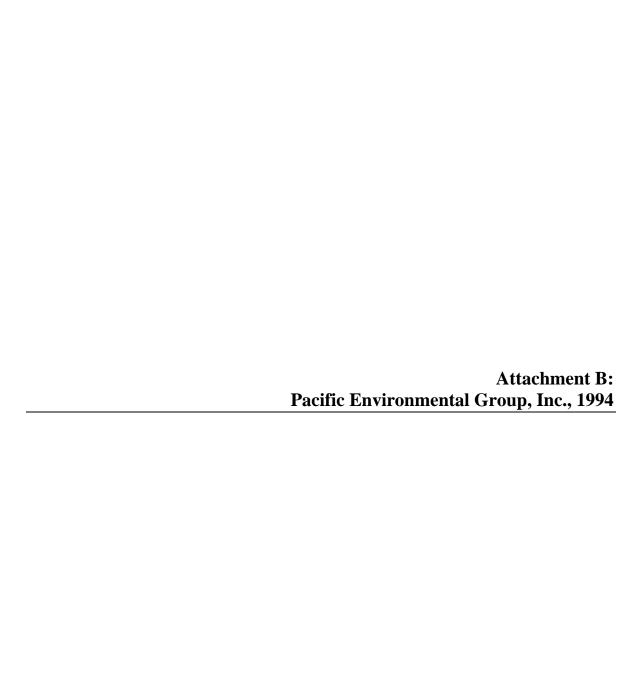
Jon N. Sondergaard

Selfior Environmental Geologist

" CEMENT SURFACE SEAL

CHEVRON U.S.A. INC. SERVICE STATION No. 1122


MONITORING WELL MW-1


FIGURE 2

W.O. <u>W-6420</u>
BY <u>JNS</u>
DATE <u>OCT 1989</u>
SCALE N.T.S.

RITTENHOUSE-ZEMAN & ASSOCIATES, INC. Geotechnical & Hydrogeological Consultants 1400 140th Avenue N.E. Bellevue, WA 98005

RECEIVED OCT 071994 DEPT. OF ECOLOGY

October 5, 1994

Chevron U.S.A. Products Company 20500 Richmond Beach Drive NW Seattle, WA 98177 Phone 206 542 9720

Mr. Ben Amoah-Forson Department of Ecology Northwest Regional Office 3190 160th Avenue SE Bellevue, Washington 98008-5452

Re: Stage II Oversight Report Chevron Fac. #60091122 Blaine, Washington

Dear Mr. Amoah-Forson:

Please find attached a copy of Pacific Environmental Group, Inc.'s (Pacific) September 9, 1994 report describing oversight and sampling performed at the above referenced facility during installation of Stage II vapor recovery equipment and an additional underground storage tank. Pacific was on site during trenching and excavation activities to field screen excavated soil and collect soil samples. In addition, water pumped into a temporary storage tank during excavation dewatering was sampled before and after treatment. Additional samples were collected and analyzed during the removal of a UST previously abandoned in place.

Given the installation of containment systems and continued operation of this service station as a Chevron facility, we do not propose any remedial action at this time. Should you have any questions, please feel free to contact me at 206-546-0523.

Very truly yours,

Timothy D. Johnson Project Manager

Attachment

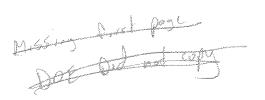
DEPT. OF ECOLOGY

September 9, 1994 Project 520-060.1A

Mr. Tim Johnson Chevron U.S.A. Products Company 20500 Richmond Beach Dr. NW Seattle, WA 98177

DEPARTMENT CF ECOLOGY SELIS AT NWRO/TCP TANK UNIT INTERIM CLEANUP REPORT SITE CHARACTERIZATION FEMAL CLEANUP REPORT	, 2000
AFFECTED MEDIA: SOIL OTHERGW INSPECTOR (INIT.) ADF DATE 11-28-	

Re: Stage II Vapor Recovery System Installation and New UST Installation Chevron Service Station No. 60091122 568 Peace Portal Drive Blaine, Washington


Dear Mr. Johnson:

This letter presents the results of an environmental investigation conducted by Pacific Environmental Group, Inc. (PACIFIC) at Chevron U.S.A. Service Station 60091122, located at 568 Peace Portal Drive in Blaine, Washington (Figure 1). The purpose of this investigation was to assess and document soil quality with respect to petroleum hydrocarbons at the site during the installation of finel lines, Stage II vapor recovery equipment, and one new underground storage tank (UST). Services were provided by PACIFIC under Chevron Contract No. CB6C930506NWX, Release No. 1067710.

Field activities were performed at the site by PACIFIC between March 30 and May 12, 1994. The scope of work for the environmental investigation consisted of the following tasks:

- Preparing a site safety plan in accordance with OSHA regulations to reflect on-site sampling activities.
- Field screening of the open trenches and stockpiled soil using a photo-ionization detector (PID).
- Collecting soil samples from UST and trench excavation locations based on PID readings and in compliance with Washington State Department of Ecology (Ecology) guidelines.

Project 520-060.1A September 9, 1994 Page 2

- Documenting the removal and condition of an abandoned UST encountered during trenching activities.
- Collecting samples from excavation groundwater pumped into a portable storage tank (Baker Tank).
- Collecting samples from water in the abandoned UST discovered during excavation.
- Submitting soil samples, water samples, and appropriate documentation to a Chevron approved laboratory for analysis.
- Obtaining permits to treat and discharge water.
- Treating water collected in a Baker Tank.
- Preparing this letter report.

SITE DESCRIPTION

The Chevron site is situated at 568 Peace Portal Drive in Blaine, Washington (Figure 1). Three USTs are located in a common excavation in the northeastern corner of the property. One additional 12,000-gallon UST was placed along the northern periphery of this common excavation during the scope of this investigation. Regular leaded, regular unleaded, and supreme unleaded gasoline are stored in the existing USTs. The new UST will store regular unleaded gasoline. One used oil UST is located southeast of the station building. Another 2,000-gallon undocumented UST was encountered and removed during trenching activities. At least three other pre-existing USTs have been previously removed from the site and at least two other USTs have been abandoned in place.

UNDERGROUND STORAGE TANK INSTALLATION

During the week of March 28, 1994, A.L. Sleister and Sons Construction, Inc. (Sleister) completed an excavation for the new UST. This excavation was located north of the existing gasoline UST excavation. Depth to water was approximately seven feet below grade in the excavations on-site. Approximately 13,000 gallons of water were pumped into a Baker Tank from the existing UST complex prior to beginning the new UST excavation. Approximately 3,000 gallons of additional water were pumped into a Baker Tank from the new UST excavation during the emplacement of the new 12,000 gallon double-walled fiberglass UST.

STAGE II VAPOR RECOVERY RETROFIT

During the week of April 11, 1994, Sleister began installation of the Stage II vapor recovery system. The scope of work performed by Sleister included fuel/vapor recovery line trenching, electrical conduit trenching, system installation, line-testing, and backfilling. A total of approximately 150 linear feet of trenching and an area exposing a portion of the gasoline UST complex were excavated to accommodate the fuel/vapor recovery lines. Another 70 linear feet of trenching were excavated to accommodate electrical conduits.

UNDERGROUND STORAGE TANK REMOVAL

PACIFIC documented the removal of an undocumented 2,000-gallon UST encountered during trenching activities. The UST contained approximately 1,500 gallons of water. The water was sampled and transferred into an on-site Baker Tank. PACIFIC observed the UST removal procedure. The UST removed was a single-walled steel tank with surface corrosion and pitting. There were no visible holes. The final dimensions of the excavation were 13 feet by 9 feet by 8 feet deep. Two sidewall soil samples (SSW-1 and ESW-1) were collected at 7.5 feet below grade from the south and east sidewalls, respectively. The sampling followed guidelines presented in Section 5, Table 5-2, of the Department of Ecology "Guidance for Site Checks and Site Assessments for Underground Storage Tanks". A water sample (TPW-1) was also collected from standing water in the bottom of the excavation. This sample was collected in lieu of a bottom soil sample according to Sections 5.2.3 and 5.3 of the guidance document referenced above.

SOIL SCREENING, EXCAVATING, AND SAMPLING

Trenches for the fuel lines and vapor recovery lines were excavated along the inside of each of the two pump islands. The trenching extended to the east to join the USTs in an excavation uncovering a portion of the UST complex (Figure 1). Trenches to accommodate electrical conduits were also excavated along the outside of the two pump islands. The fuel/vapor recovery line trenching ranged from approximately 6.0 to 10.0 feet wide and depths ranged from approximately 3.0 to 5.0 feet deep. The electrical conduit trenching was approximately 2.0 feet wide and approximately 2.0 feet deep. A total of approximately 125 cubic yards (cy.) of material excavated during trenching activities was stockpiled in two separate stockpiles (Stockpile 3 and Stockpile 4) along the excavated trenches. The material excavated from the trenches, from the UST removal excavation, and from the UST installation excavation, consisted primarily of native medium to coarse grained sand with trace layers of interbedded clay, mixed with varying amounts of imported pea gravel. Material excavated from the UST complex consisted of pea gravel.

Project 520-060.1A September 9, 1994 Page 4

Trench Screening

Following excavation of the trenches, soil in the trenches was screened for the presence of volatile organic compounds (VOCs) using a Thermo Environmental Instruments Model 580B PID. The results of this testing are considered to be semi-quantitative, since the PID does not provide compound-specific measurements. Soil sampling and PID field screening methodology is presented in Attachment A.

Soil with PID readings above background levels was identified in the trenches along the eastern and western pump island and in a localized area leading to the UST complex.

Trench Sampling

In accordance with Ecology sampling guidelines, a total of six soil samples (T1-4, T2-3, T3-3, T4-3, T5-3, T6-3, and T6-4) were collected from the trenches along the pump islands and leading to the UST complex. Soil sample locations are shown on Figure 1.

Soil Sample T1-4 was collected from the fuel/vapor recovery line trench leading from the pump islands to the UST complex where elevated PID readings were noted. Sample T2-3 was collected from the fuel/vapor recovery line trench leading from the pump islands to the UST complex. Soil Samples T3-3 and T4-3 were collected from the fuel/vapor recovery line trench along the eastern pump island where clevated PID readings were noted. Soil Samples T5-3, T6-3 and T-6-4 were collected from the fuel/vapor recovery line trench along the western pump island. Soil Sample T6-4 was collected one foot below T6-3 to delineate the extent of vertical migration of petroleum constituents. Soil sample locations are shown on Figure 1.

Underground Storage Tank Complex Excavation

The UST complex was uncovered, exposing the top of all three previously existing USTs and the newly emplaced UST. Excavated material from the UST excavation consisted of pea gravel. PID readings in the UST excavation were consistently at background levels.

Soil Stockpiles

Material excavated during construction operations was stockpiled on-site in five separate stockpiles (SP-1 through SP-4 and TSP).

Stockpile SP-1 contained approximately 500 cy. of sand and clay generated during excavation for the new UST. Five soil samples (SP-1A through SP-1E) were collected from Stockpile SP-1 and submitted for analysis.

Project 520-060.1A September 9, 1994 Page 5

Stockpile SP-2 contained approximately 10 cy. of sand and pea gravel excavated from beneath the concrete slab around the fills of the existing USTs. One soil sample (SP-2) was collected from Stockpile SP-2 and submitted for analysis.

Stockpile SP-3 contained approximately 45 cy. of sand and clay generated from trenching activities along the pump islands. Field observations indicated that this soil was above cleanup levels and it was segregated from other soils. Two soil samples (SP-3A and SP-3B) were collected from Stockpile SP-3 and submitted for analysis.

Stockpile SP-4 contained approximately 80 cy. of sand and pea gravel generated during the trenching along the pump islands and leading to the UST complex. Three soil samples (SP-4A through SP4-C) were collected from Stockpile SP-4 and submitted for analysis.

Stockpile TSP contained approximately 25 cy. of sand and clay generated during the removal of the encountered UST. Two soil samples (TSP-1 and TSP-2) were collected from TSP and submitted for analysis.

The stockpiled soil from Stockpile 1 and Stockpile 2, with reported TPH concentrations below MTCA Method A cleanup levels, was transported to Wilder Landfill in Whatcom County, Washington.

The soil from Stockpile 3, the Tank-pull Stockpile (TSP), and the soil from Stockpile SP-4 with reported TPH concentrations above MTCA Method A cleanup levels was transported to Holnam Ideal Division (Holnam)of Seattle, Washington. The portion of Stockpile SP-4 which was below MTCA Method A cleanup levels was transported to Wilder Landfill in Whatcom County, Washington.

WATER SAMPLING, TREATMENT, AND DISPOSAL

During the installation of the new 12,000-gallon UST, Sleister pumped approximately 13,000 gallons of groundwater from the existing gasoline UST complex and stored the water in an on-site Baker Tank. Approximately 3,000 gallons of water was also pumped into the Baker Tank from the new UST excavation during the emplacement of the UST. Groundwater stored on-site in the 16,500-gallon Baker Tank was sampled (BT-1) and submitted for analysis. Analytical results identified concentrations of BTEX exceeding those limits specified by the City of Blaine Public Works for disposal to the sanitary sewer. The water was treated in the Baker Tank with a portable air sparging unit. Air sparging involves blowing air from an air compressor through the water to volatilize the BTEX compounds. Air sparging was performed with permission from the Northwest Air Pollution Control Authority and in accordance with their guidelines. Following treatment, the water was resampled BT-1(B) and submitted for analysis. Analytical results

Project 520-060.1A September 9, 1994 Page 6

indicated concentrations below those limits specified by the City of Blaine Public Works and the water was subsequently discharged at a controlled flow rate to the sanitary sewer.

Following discharge, approximately 1,500 gallons of liquid was pumped from the abandoned 2,000-gallon UST and stored in the Baker Tank. The portable air sparging unit, in compliance with Northwest Air Pollution Control Authority guidelines, was used to treat the water. Three events of air sparging and sampling (Samples BT-2, BT-2B, and BT-2C) were required before concentrations below the limits specified by the City of Blaine Public Works were achieved. Following treatment, the water was discharged at a controlled flow rate to the sanitary sewer. During both discharges, the water flow was metered to obtain accurate gallonage discharged. A representative from the City of Blaine Public Works was present on-site to document the gallonage discharged to the sanitary sewer. Groundwater sampling procedures are included in Attachment A.

CHEMICAL ANALYSES

Based on field PID readings and discussions with Chevron, PACIFIC submitted fifteen soil samples for analysis by a state certified laboratory. Seven water samples were also submitted for analysis by a state certified laboratory. Soil and water samples were analyzed for some or all of the following parameters:

PARAMETER	<u>METHOD</u>
Total petroleum hydrocarbons as diesel and oils	Washington Method WTPH-D + extended
Total petroleum hydrocarbons as gasoline (TPH-gasoline)	Washington Method WTPH-G
Benzene, toluene, ethylbenzene and xylenes (BTEX compounds)	EPA Method 8020
Total lead	EPA Method 7421

The soil samples were analyzed by Analytical Technologies, Inc. of Renton, Washington.

Analytical Results

Soil sample analytical results are presented in Table 1. Water sample analytical results are presented in Table 2. Laboratory methods, analytical reports, and chain-of-custody documentation are contained in Attachment B.

Project 520-060.1A September 9, 1994 Page 7

CONCLUSIONS

Analytical results for Trench Samples T3-3, T5-3, T6-3, and T6-4 indicate that concentrations of TPH-gasoline and one or more of the BTEX compounds exceed MTCA Method A cleanup levels.

Analytical results for the soil sample collected from the eastern sidewall (ESW-1) of the UST excavation indicate that the concentration of benzene exceeds the MTCA Method A cleanup level. Analytical results for the soil sample collected from the southern sidewall of the UST removal excavation indicate that the concentrations of TPH-gasoline and the BTEX compounds are below MTCA Method A cleanup levels.

Neither concentrations of TPH-gasoline nor any BTEX compounds were detected above laboratory reporting limits in the soil samples collected from Stockpile 1 and Stockpile 2.

Analytical results for Stockpile 3, Stockpile 4 and Stockpile TSP indicate that concentrations of TPH-gasoline exceed MTCA Method A cleanup levels.

The stockpiled soil with reported TPH concentrations below MTCA Method A cleanup levels was transported to Wilder Landfill in Whatcom County, Washington. The approximately 45 cy. of soil from Stockpile SP-3 and approximately 30 cy. of soil from Stockpile SP-4 with reported TPH concentrations above MTCA Method A cleanup levels was transported to Holnam Ideal Division of Seattle, Washington.

Approximately 16,000 gallons of groundwater was treated with a portable air sparging unit and subsequently discharged to the sanitary sewer.

Approximately 1,500 gallons of water was pumped from the UST encountered during trenching and was treated with a portable air sparging unit and subsequently discharged to the sanitary sewer.

Groundwater exceeding MTCA Method A cleanup levels for TPH-gasoline and the BTEX compounds was identified in the excavation generated during the UST removal.

Project 520-060.1A September 9, 1994 Page 8

PACIFIC appreciates this opportunity to be of continuing service. Should you have any questions regarding the contents of this report, please call.

Sincerely,

Pacific Environmental Group, Inc.

Brett Amero

Staff Geologist

John Jøhnson CHMM, REP

Project Manager

Attachments: Table I - Soil Analytical Results

Table 2 - Water Analytical Results
Figure 1 - Soil Sample Location Map
Attachment A - Investigative Procedures

Attachment B - Laboratory Analytical Methods and Reports

Chain-of-Custody Documentation

TABLE 1
SOIL ANALYTICAL RESULTS
CHEVRON U.S.A. SERVICE STATION 60091122

TPH-Gasoline - Washington Method WTPH-G
BTEX Compounds - EPA Method 8020
TPH-Diesel, TPH-Oil - Washington Method WTPH-D + extended

Concentration in mg/kg (ppm)

	ale de la companya d	***************************************	***************************************			PAI	PARAMETER		
Sample I.D.	Location	Date	Depth (feet)	TPH-Diesel + extended	TPH. Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes
7-	Product line trench	4/18/94	4.0	Ϋ́Z	48	0.09	0.1	0.1	2.2
172-3	Product line trench	4/18/94	3.0	NA	N	NO	ND	QN ON	<u>-</u>
T3-3	Product line trench	4/18/94	3.0	ΝΑ	5,700	5.8	29	36	760
14-3	Product line trench	4/18/94	3.0	NA	S	N N	S	QN	Q
T5-3	Product line trench	4/18/94	3.0	NA	1,070	0.4	3.3	2.1	44.3
T6-3	Product line trench	4/18/94	3.0	NA	853	4.64	22.1	6.2	57.5
T6-4	Product line trench	4/18/94	4.0	NA	12	5.36	6.01	1.3	8.01
SP-1A	Stockpile 1	4/5/94	ı	ΩN	N N	ON	S	Ω	QX QX
SP-1B	Stockpile 1	4/5/94	ı	OIN	Ŝ	ND	QN	QN QN	0.2
SP-1C	Stockpile 1	4/5/94	,	ND	ON O	NO	NO	ND	QN.
SP-1D	Stockpile 1	4/5/94	ą	ND	S S	ND	QN QN	NO	2
SP-1E	Stockpile I	4/5/94	í	Q	G N	ON O	S	S	S
SP-2	Stockpile 2	4/18/94	ś	NA A	NO	S	ND	N	ON ON

(continued)

TABLE 1
SOIL ANALYTICAL RESULTS
CHEVRON U.S.A. SERVICE STATION 60091122

TPH-Gasoline - Washington Method WTPH-G
BTEX Compounds - EPA Method 8020
TPH-Diesel, TPH-Oil - Washington Method WTPH-D + extended
Concentration in mg/kg (ppm)

Sample I.D. Location			•			· · · · · · · · · · · · · · · · · · ·		V-1-1-000	
			Depth	TPH-Diesel	TPH-			Ethyl-	
2.757	tion	Date	(feet)	+ extended	Gasoline	Benzene	Toluene	benzene	Xylenes
SP-3A Stockpile 3		4/18/94	į	Ϋ́Ζ	701	8.45	45.9	10.2	72.2
SP-3B Stockpile	ĸ	4/18/94	f	N N	285	0.05	0.2	0.2	9.6
SP-4A Stockpile 4		4/18/94	ŀ	Z A	N	ND ON	ON	N	ĝ
SP-4B Stockpile 4		4/18/94	ş	NA	QN	QN QN	NO	N	Š
SP-4C Stockpile 4	pile 4	4/18/94	ł	Ϋ́	121	0.15	Z,	NO	Ç
SSW-1 South sidewall of excavation	l of excavation	4/26/94	7.5	ζ Z	ŝ	ŝ	Ê	ŝ	0.5
ESW-1 East sidewall of	of excavation	4/26/94	7.5	NA V	<u></u>	0.77	N O N	0.4	9:1
TSP-1 Tank-pull stockpile	stockpile	4/26/94	t	NA A	1,260	0.58	24.0	14.4	95.3
TSP-2 Tank-pull stockpile	stockpile	4/26/94	1	» V	7.6	S	0.1	QN	3.2
MTCA Method A Cleanup levels:				200	100	0.5	40	20	20
Reporting Limits				25/100	5.0	0.05	0.1	0.1	0,1

NOTES: ND - Not Detected NA - Not Analyzed

TABLE 2 WATER ANALYTICAL RESULTS CHEVRON U.S.A. SERVICE STATION 60091122

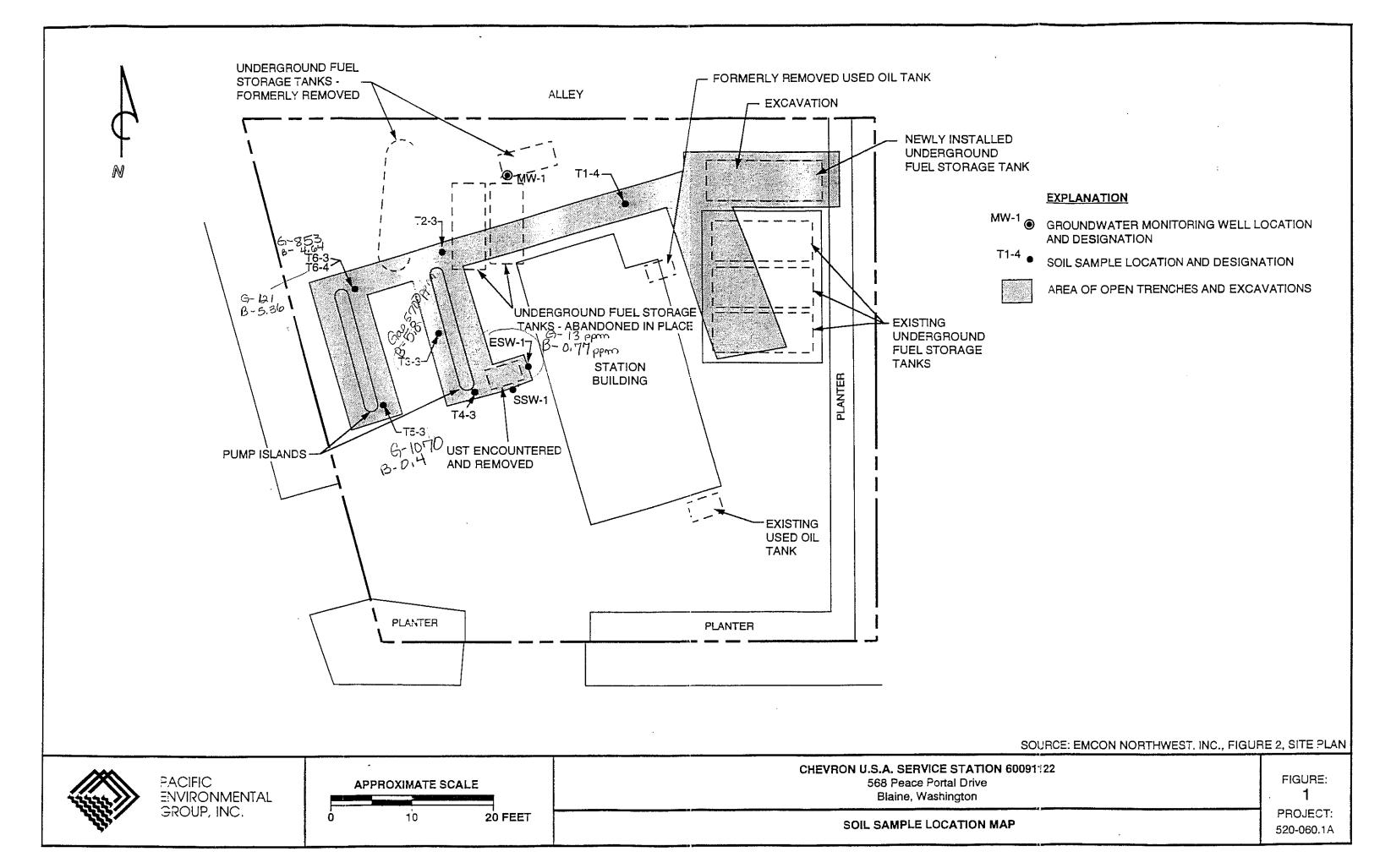
TPH-Diesel, TPH-Oil - Washington Method WTPH-D + extended TPH-Gasoline - Washington Method WTPH-G BTEX Compounds - EPA Method 8020 Total Lead - EPA Method 7421

Concentrations in ug/L (ppb)

				PAR	AMETER			
Sample I.D.	Sample Date	TPH-Diesel + extended	TPH- Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	Total Lead
B T -1	3/30/94	400/ND	1,150	111	86	19	78	3.0
BT-1(B)	4/6/94	350/ND	ND	ND	ND	ND	ND	NA
Tank^	4/18/94	2,160/ND	56,000	3,400	5,900	261	9,700	NA
BT-2	4/29/94	3,800/1,730	2,310	5.2	39	19	132	NA
BT-2B	5/6/94	6,950/3,540	2,320	8.8	37	14	110	NA
BT-2C	5/12/94	4,160/2,420	490	ND	ND	9	5	103
TPW-1	4/26/94	NA	220,000	1,300	11,000	3,300	30,000	NA
City of Blaine Discharge Limits		100,000*	100,000*	100**	100**	100**	100**	
MTCA Method A Cleanup Levels:		NA	1,000	5	40	30	20	5
Reporting Limits:		250/750	50/100	0,5	1	1	1	2

NOTES: ND - Not Detected

NA - Not Analyzed


Certified Analytical Results are attached

5200601A\GWTRTBL.XLS 9/9/94

[^] Water sample collected directly from UST

^{* -} Discharge limit for TPH-Gasoline, TPH-Diesel, and TPH-Oil combined

^{** -} Discharge limit for all BTEX compounds combined

Attachment C: Delta Environmental Consultants, Inc., 2001

1200-112th Avenue N.E. Suite C-146 Bellevue, Washington 98004-3769 425/450-7726 FAX: 425/450-8837

October 3, 2001 Project CW91122-A

Mr. Brett Hunter Chevron Products Company 6001 Bollinger Canyon Rd Building V, Room 1144 San Ramon, CA 94583-0904

Re: Sub-surface Environmental Investigation Chevron Service Station 9-1122 568 Peace Portal Drive Blaine, Washington

Dear Mr. Hunter:

This letter presents the results of an environmental investigation conducted by Delta Environmental Consultants, Inc. (Delta) at Chevron Service Station 9-1122, located at the address referenced above (Figure 1). The purpose of this investigation was to assess and document the soil and groundwater quality with respect to petroleum hydrocarbons at the site.

er er skriver far det flegte fra flegte forskriver fra skriver en en en en en en en greger en sammen en en

The scope of work for the environmental investigation was performed between April 24, 2001 and June 19, 2001 and consisted of the following tasks:

- Create the Site Health and Safety Plan.
- Drill four exploratory soil borings (B-1 to B-4).
- Install a two-inch diameter groundwater monitoring well in each of the soil borings (MW-1 and MW-4).
- Collect soil samples from selected intervals in the soil borings.
- Field screen soil samples using a photo-ionization detector (PID).
- Develop the newly installed wells.
- Survey the elevations of the newly installed wells with respect to an arbitrary site datum.

TRANSPORT TO THE PROPERTY OF T

Chevron 9-1122, Blaine 10/3/2001 Page 2

• Collect groundwater samples from the newly installed wells (MW-1 to MW-4).

- 4-7-7-14-50 April 15-68-15-68-15-15-1

- Submit soil and groundwater samples and appropriate documentation to a Chevron approved laboratory for analysis.
- Dispose of drill cuttings in accordance with the current Department of Ecology guidelines.

SITE DESCRIPTION

The Chevron Service Station is an operating facility located at 568 Peace Portal Dive in Blaine, Washington. The area surrounding the site consists of a residence to the east, a commercial building complex to the south, Peace Portal Memorial Park to the west and a retail service station to the north. Four gasoline underground storage tanks (USTs) are located in a common excavation in the northeast corner of the site. The service station building is located in the center of the site. The fuel dispensers are located west of the station building.

SOIL BORING INSTALLATION AND SAMPLING

Cascade Drilling, Inc. (Cascade) of Woodinville, Washington installed four exploratory soil borings (B-1 to B-4) on April 24, 2001. The borings were drilled to total depths between 16.5 feet and 21.5 feet below grade (bg). The soil borings were drilled using a hollow-stem auger drill rig, and logged by a Delta environmental engineer using the Unified Soil Classification System. Soil samples were collected in 5-foot intervals to the total depths explored in the borings. Soil samples for chemical analysis were retained in laboratory-supplied glass jars with Teflon[®] lined lids. The soil samples were placed on ice for transport and submitted to North Creek Analytical, Inc. (NCA) in Bothell, Washington for chemical analyses. Sample preservation techniques are described in Attachment A.

Soil samples were field screened for the presence of hydrocarbons using a Perkin Elmer Photovac Model 2020 photo-ionization detector (PID) with a 10.0 electron volt (eV) lamp. Field screening methodology is described in Attachment A. PID results for the soil samples collected from soil borings ranged from non-detect to 13 parts per million (ppm). The results of this field screening are also recorded on the soil boring logs included in Attachment B. It should be noted that the PID measurements are considered semi-quantitative data since the instrument detects all organic compounds with ionization potentials less than 10 eV.

MONITORING WELL INSTALLATION

The four exploratory soil borings were converted to groundwater monitoring wells (MW-1 to MW-4) by the installation of 2-inch diameter, schedule 40 PVC casing with 0.010 inch factory slotted screen. The well screen was placed across the saturated zone in

CW91122 Report

Chevron 9-1122, Blaine 10/3/2001 Page 3

each well and extended from approximately 5 feet to 15 feet bg. The annular space of each well was packed with a graded 2x12 silica sand. The sand pack was placed across the entire screened interval, extending approximately two feet above the top of the screens. The annular space of each well was then sealed with hydrated bentonite chips to approximately 1.5 feet bg. A plug-type locking device and waterproof monument set in concrete was installed at the top of each monitoring well. Refer to the boring logs in Attachment B for specific information on well construction.

The elevations of wells MW-1 through MW-4 were surveyed to the nearest 0.01 foot with respect to an arbitrary datum established for the site. A survey reference mark was scribed on the lip of each monitoring well casing with a permanent marker. The arbitrary datum established at the site was assigned an elevation of 100.00 feet. Surveyed elevations are presented in Table 1 of the Gettler-Ryan Inc (GR) data packet included in Attachment C. The survey field data sheet is presented in Attachment B.

MONITORING WELL DEVELOPMENT AND SAMPLING

Monitoring wells MW-1 through MW-4 were developed on May 3, 2001 by bailing each well with a disposable 1.5-inch diameter bailer. Well development procedures are presented in Attachment A. The well development field data sheet is included in Attachment B.

GROUNDWATER SAMPLING

A representative of GR performed water level measurements and groundwater sampling on June 19, 2001. The groundwater results are presented in the GR data packet included in Attachment C.

ANALYTICAL PARAMETERS

Soil and groundwater samples were analyzed for one or more of the following parameters:

PARAMETER	METHOD
Total Petroleum Hydrocarbons as gasoline	Northwest Method NWTPH-gasoline
Total Petroleum Hydrocarbons as diesel and oil	Northwest Method NWTPH-Dx w/silica gel clean-up
Benzene, toluene, ethylbenzene, and xylenes (BTEX compounds)	EPA Method 8021B
Methyl tert-butyl ether	EPA Method 8021B (MTBE)
Total lead (Soil)	EPA 6000/7000 Series Methods

and the second section of the second second section is a second second section of the second section s

Chevron 9-1122, Blaine 10/3/2001 Page 4

Dissolved Lead (Water)

EPA 6000/7000 Series Methods

The soil and groundwater samples were analyzed by North Creek Analytical, Inc., of Bothell, Washington.

SOIL ANALYTICAL RESULTS

Concentrations of TPH-diesel and TPH-oil were not detected above laboratory reporting limits in the soil samples submitted for analysis from Borings B-1 through B-4. TPH-gasoline was detected in soil samples submitted for B-2, B-3 and the stockpile sample at 151 milligrams per kilogram (mg/kg), 6.94 mg/kg, and 134 mg/kg, respectively. One or more BTEX compounds were detected in soil samples from borings B-2, B-3, B-4 and the stockpile sample at concentrations ranging from 0.0657 mg/kg to 12.4 mg/kg. The stockpile sample contained a total lead concentration of 6.40 mg/kg. Soil sample analytical results are presented in Table 1. Laboratory methods, analytical reports, and chain-of-custody documentation are contained in Attachment D.

GROUNDWATER ANALYTICAL RESULTS

Concentrations of TPH-gasoline were detected in the groundwater samples collected from wells MW-1, MW-2 and MW-3 at 192 parts per billion (ppb), 40,200 ppb and 2,290 ppb, respectively. One or more BTEX compounds were detected in wells MW-1, MW-2 and MW-3 at concentrations ranging from 0.550 ppb to 3,200 ppb. Concentrations of TPH-diesel were detected in well MW-2 at 791 ppb. The analytical laboratory noted that the TPH-diesel concentration was primarily due to an overlap from the gasoline range product. The groundwater results are presented in the GR data packet included in Attachment C.

SUBSURFACE CONDITIONS

Soils encountered in the investigation consisted predominantly of loose to medium dense silty sand underlain by soft inorganic clay. PID measurements in the soil samples screened ranged from non-detectable levels to 13 ppm.

Depth to groundwater was measured in Wells MW-1 through MW-4 on June 19, 2001. Depth to groundwater in the wells on this date ranged between 4.04 feet to 9.42 feet below top of well casing.

FINDINGS AND CONCLUSIONS

Soil sample concentrations from borings B-1, B-3 and B-4 did not exceed the Washington State Model Toxics Control Act (MTCA) Method A cleanup levels in effect on the date of this project for TPH-gasoline, TPH-diesel, and BTEX compounds. The detected concentrations of TPH-gasoline and benzene in the five foot sample submitted for analysis

the state of the Armer

Chevron 9-1122, Blaine 10/3/2001 Page 5

from boring B-2 and the stockpile sample exceeded the respective MTCA Method A cleanup levels.

TPH-oil was not detected above laboratory reporting limits in the groundwater samples submitted for analysis. Detected concentrations of TPH-gasoline and BTEX compounds in groundwater samples collected from well MW-2 exceeded the MTCA Method A cleanup levels. The detected concentration of TPH-diesel in well MW-2 did not exceed the MTCA Method A cleanup level. The detected concentration of TPH-gasoline in the groundwater sample collected from well MW-3 exceeded the MTCA Method A cleanup level.

Groundwater elevations on June 19, 2001 ranged from 90.58 feet to 94.67 feet. The inferred groundwater migration direction on this date was towards the northwest at a gradient of approximately 0.08 ft/ft. The groundwater elevations are based on an arbitrary project datum of 100.00 feet. Groundwater elevation contours are presented on Figure 1 of the GR date packet.

The drill cuttings were compiled in 55-gallon drums and stored on site. On June 18, 2001, the 1.93 tons of soil generated during assessment was transported off site by Envirotech Systems of Lynnwood, Washington to TPS Technologies of Tacoma, Washington for disposal. The soil disposal weight ticket is included in Attachment B.

一个一直就是接近的,在中心中的地震被逐渐发展的一个的电影的影响,但是一个自己的影响的一个

Chevron 9-1122, Blaine 10/3/2001 Page 6

Delta appreciates this opportunity to be of continuing service. If you have any questions regarding the contents of this report, please call.

Sincerely,

Delta Environmental Consultants, Inc.

Shawn Madison

Environmental Engineer

Matthew Miller Project Manager

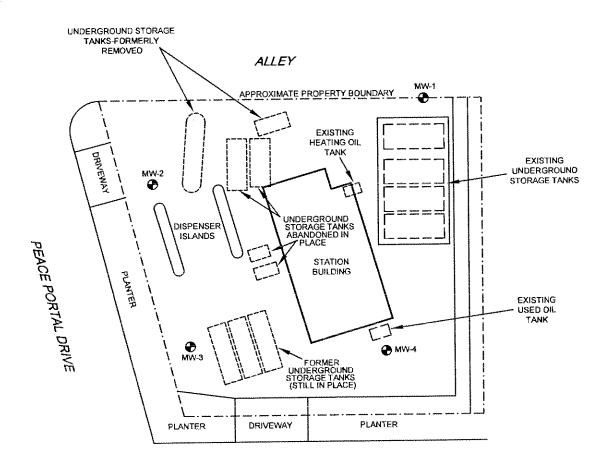
Attachments: Table 1 - Soil Analytical Results

Figure 1 - Site Map

Attachment A - Investigative Procedures

Attachment B - Boring Logs/Field Data Sheets/Soil Disposal Weight Ticket Attachment C - Gettler - Ryan Groundwater Monitoring and Sampling Data

Attachment D - Laboratory Analytical Methods and Reports


Chain-of-Custody Documentation

cc: John Wietfeld - Washington State Department of Ecology Michael Hill - Hill's Chevron

TABLE 1 SOIL ANALYTICAL RESULTS

Chevron Service Station 91122 568 Peace Portal Drive Blaine, WA

Sample I.D.	Date	TPH-Gasoline (mg/kg)	TPH-Diesel (mg/kg)	TPH-Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total Lead (mg/kg)
B-1-5	04/24/0I	ON.	NO	ND	ND	QN.	R	Q	NA
B-2-5	04/24/01	151	QN QN	ND	1.42	2.51	1.74	12.4	NA
B-3-5	04/24/01	6.94	ND	N O	S Q	0.0657	S S	0.220	NA
B-4-5	04/24/01	ND	N	S	QN QN	Q.	Å Q	0.109	NA
Stock Pile	04/24/01	134	10.6	ND	0.642	0.954	.01	7.96	6.40
MTCA Method A Cleanup Levels:	Jeanup Levels:	100	200.00	200.00	6.5	40	20	20	250
Laboratory Reporting Limits:	ing Limits:	5.00-20.00	10.00	25.00	0.0500-0.200	0,0500-0,200	0.0500-0.200	0,100-0.400	0.370
Concentrations in milligrams per kilograms (mg/kg) ND = Not detected at the laboratory reporting limits NA = Not Analyzed Boring locations are shown on Figure 1 Certified Analytical Results are attached TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx TPH as Diesel and oil - Analysis by Northwest Method 8021B BTEX Compounds - Analysis by EPA Method 8021B Total Lead - Analysis by EPA 6000/7000 Series Methods	illigrams per kil tt the laboratory shown on Figur Results are attat vnalysis by Nort oil - Analysis by - Analysis by El	lograms (mg/kg) reporting limits re 1 ched thwest Method NW Northwest Methoc PA Method 8021B	TPH-Gx 1 NWTPH-Dx (e	:xtended) with	Acid/Silica Gel	Сlean-up			

LEGEND:

→ MW-1 MONITORING WELL LOCATION AND DESIGNATION



FIGURE 1

SITE MAP

CHEVRON SERVICE STATION NO. 9-1122

568 PEACE PORTAL DRIVE

BLAINE, WASHINGTON

	DEN'IN 4E, 4 × 7 10	~
PROJECT NO.	DRAWN BY	I
CW91-122	M.L. 5/31/01	J
FILE NO.	PREPARED BY	1
9-1122-1	S.M.	j
REVISION NO.	REVIEWED BY	1
1 .	1	1

ATTACHMENT A INVESTIGATIVE PROCEDURES

ATTACHMENT A

Exploratory Boring Installation

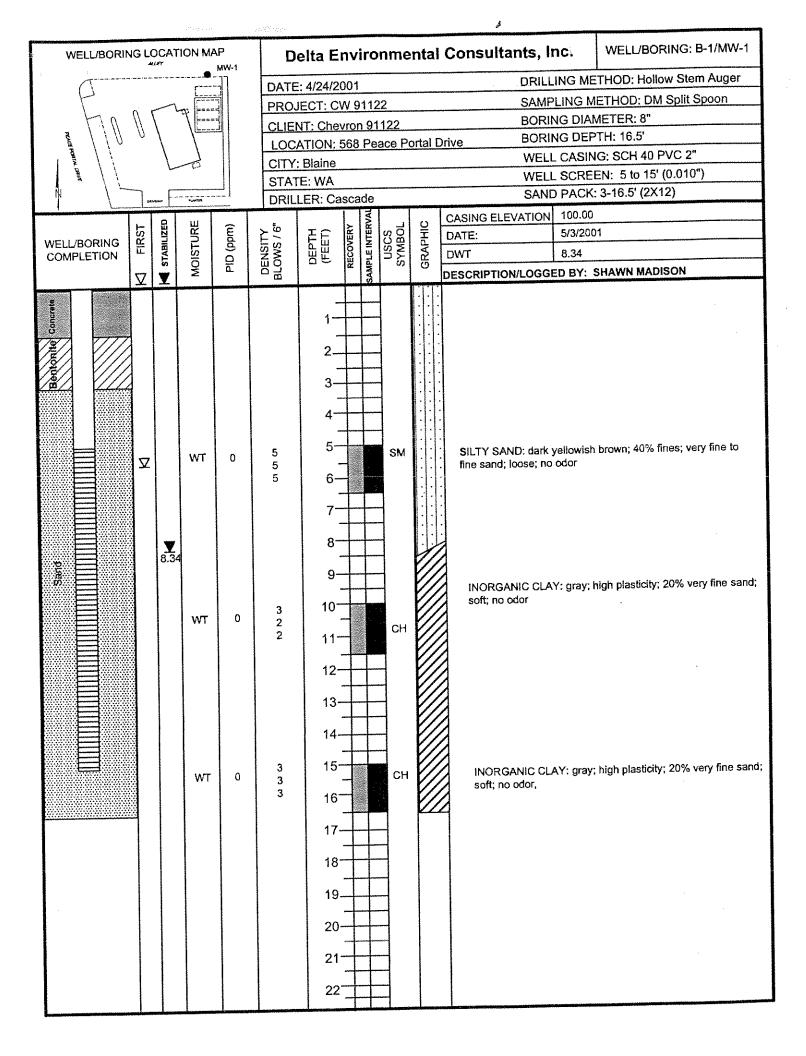
The four soil borings were drilled on April 24, 2001 by Cascade Drilling Inc., of Woodinville, Washington. The borings were drilled using eight-inch diameter hollow-stem auger drilling equipment. A Delta Environmental engineer using the Unified Soil Classification System and standard geologic techniques logged the borings. Boring logs are presented in Attachment B. Soil samples for logging and chemical analysis were collected at five-foot depth intervals by advancing a 2-inch inside diameter split-spoon sampler into undisturbed soil beyond the tip of the auger. The sampler was driven a maximum of 18 inches using a 140-pound hammer with a 30-inch drop. Soil samples for chemical analysis were retained in laboratory-supplied glass jars with Teflon® lined lids. The samples were placed on ice for transport to the laboratory accompanied by chain-of-custody documentation presented in Attachment C. The split-spoon sampler was cleaned by washing in a detergent solution followed by a clean water rinse and distilled water rinse. All drilling equipment was steam-cleaned between each boring location.

Organic Vapor Screening

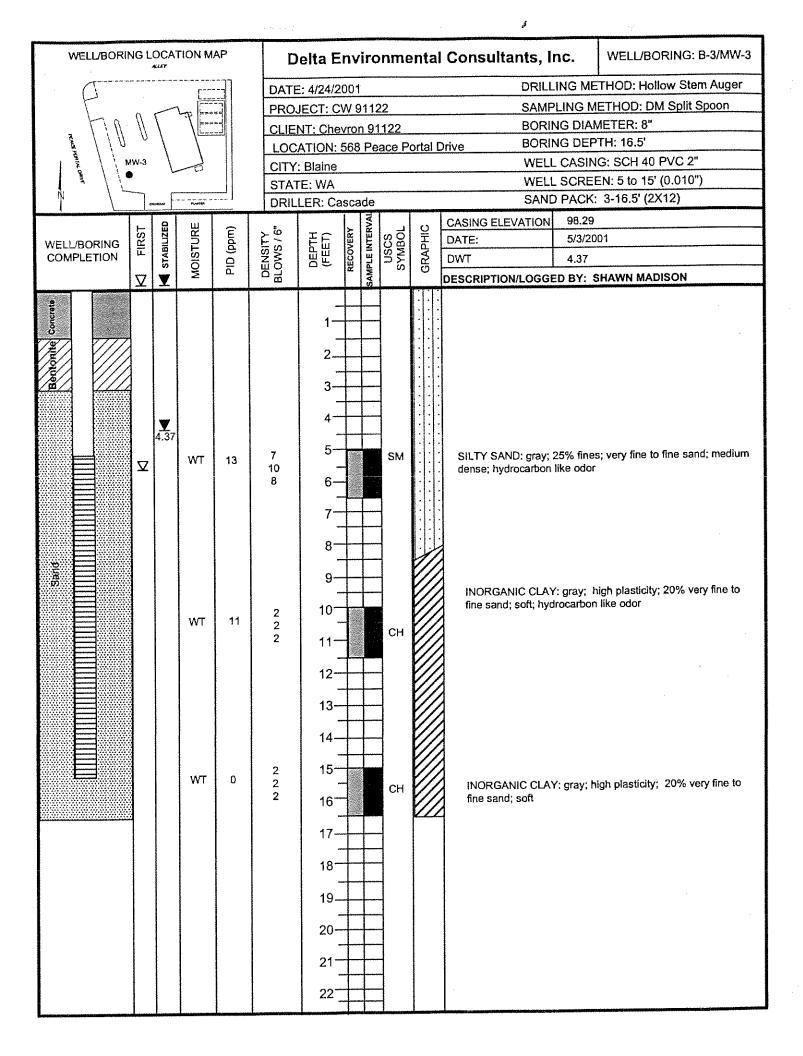
Soil samples were screened in the field for ionizable organic compounds using a Perkin Elmer Photovac Model 2020 photo-ionization detector with a 10 eV light source. The test procedure involved collecting a discrete soil sample from the split spoon, and placing it in a resealable bag. The bag was allowed to warm to ambient temperature for approximately twenty minutes, then the bag was pierced and the head-space within the bag was tested for total organic vapor, measured in parts per million, (ppm; volume/volume). The detection limit of the instrument ranges from 0.1 ppm to 2,000 ppm. It should be noted that the PID measurements are considered semi-quantitative data since the instrument detects all organic compounds with ionization potentials less than 10 electron volts (eV).

Well Development

The development procedure for groundwater monitoring wells MW-1 through MW-4 consisted of lowering a bailer through the well until striking the surface of the water, and continuing to lower the bailer to the bottom of the well. As the bailer is pulled up through the water column, the action of the bailer produces an outward surge of water that is forced from the borehole through the well screen and into the formation. This tends to break up any bridging that has developed within the formation. As the bailer is repeatedly raised and lowered through the well, the surging action created in the borehole causes the particulate matter outside the well intake to flow into the well. The water is then pumped from the well using a centrifungal pump or bailer. Continued pumping or bailing removes the particulate matter from the well. The bailing or pumping procedure is repeated until approximately 10 casing volumes of water is removed. Groundwater was treated on site by filtering the water through granular activated carbon, and subsequently discharged. Well development data sheets are included in Attachment B.


Groundwater Sampling

The groundwater sampling procedure consisted of first measuring the water level and visually checking for the presence of separate-phase hydrocarbons and sheens using a clear, single-use, disposable polyethylene bailers. Each well was then purged of a minimum of three casing volumes of water (or until dry) by bailing. Groundwater samples were collected using disposable polyethylene bailers. The samples were placed into appropriate EPA-approved containers, labeled, logged onto chain-of-custody documents, and transported on ice to North Creek Analytical Inc. laboratory in Bothell, Washington. Purge water was treated on site by filtering the water through granular activated carbon, and subsequently discharged. Field data sheets and Chain-of-Custody documentation are presented in the GR data packet in Attachment C.


international properties and the first of the properties and the first of the first of the first of the first of

CAN AND THE STATE OF THE STATE OF

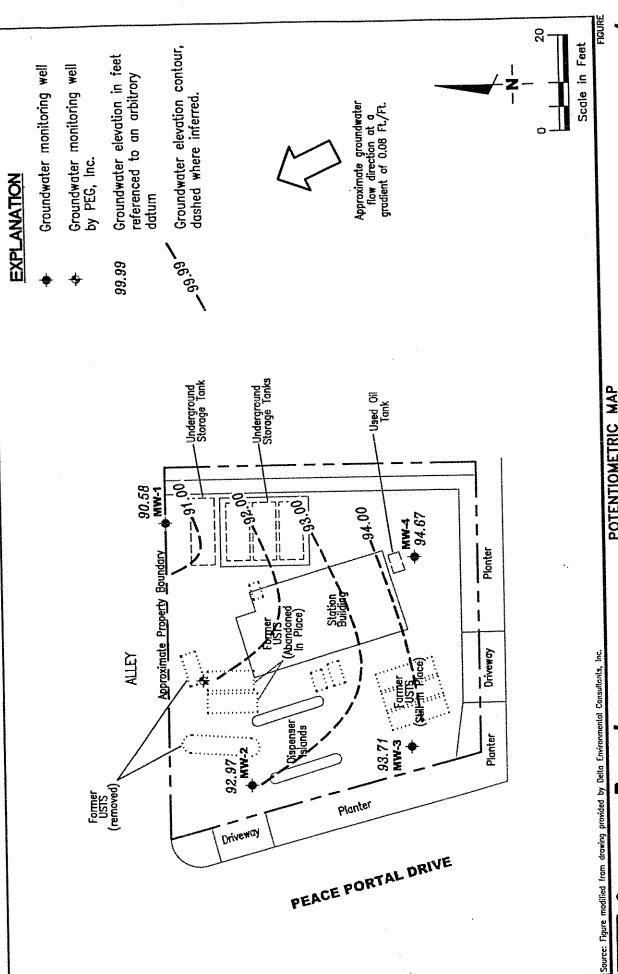
ATTACHMENT B BORING LOGS FIELD DATA SHEETS SOIL DISPOSAL WEIGHT TICKETS

\$		41	2-13-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		garang Pangka.			-12.3	es no es profespaga esclorar ama el .	
WELL/BORIN	IG LO	CATIO	ON MAI	Р	De	elta Enviro	nme	ntal	Consultants, Inc.	WELL/BORING: B-2/MW-2
				1	DATE	: 4/24/2001				THOD: Hollow Stem Auger
MW-2	_	<u> </u>			***************************************	ECT: CW 9112	22			ETHOD: DM Split Spoon
MA	1.1	2				IT: Chevron 91			BORING DIAI	
<u> </u>	0 /	\				ATION: 568 Pe		ortal D	rive BORING DEF	
PANCE LOS IN DAME		\				Blaine			WELL CASIN	IG: SCH 40 PVC 2"
* / 1	-					E: WA				EN: 5 to 15' (0.010") : 3-21.5' (2X12)
\	DRIVEGA		AMIER	_ 1	DRIL	ER: Cascade	7	T		. 3-21.5 (ZX(Z)
	Ļ	Q.	뀌	Ê	, <u>.</u> 59	DEPTH (FEET) RECOVERY SAMPLE INTERVAL	, ₁	ဋ	CASING ELEVATION 97.01 DATE: 5/3/20	n1
WELL/BORING	FIRST	STABILIZED	Į,	PID (ppm)	SIT VS /	DEPTH (FEET) RECOVERY	USCS	GRAPHIC		V F
COMPLETION	ŧ I		MOISTURE	PB	DENSITY BLOWS / 6"	AP IS	3,5	F5	DWT 3.72 DESCRIPTION/LOGGED BY:	SHAWN MADISON
	又	<u> </u>				- S		 . . .	DESCRIPTION/LOGGED D1.	
2							1			
Concrete						1-1-1-	1			
V ₂ /////	1					2				,
	1]			
	1		ļ			3	-			
		•					1			
		3.72	1					[: :		
			and the second		_	5			SILTY SAND: greenish gray	· 40% fines: very fine to fine
	又		DP	11	5 6		SM		sand; hydrocarbon like odor	loose
		.]		• •	6	6-			-	
								: : : :		
						/				
						8-4-4-	_			
							-			
	200					9-+-	-			
	X X									•
			WT	0	3	10				the to
	X X		-		3	11	СН	V //	INORGANIC CLAY: gray; r fine sand; no odor; soft	ligh plasticity; 20% very fine to
	Š.								THIS SEND, NO GOOD, COM	
	ž X					12-	\dashv	<i>V//</i>		
						13-			3	
	33 33					14——	_	<i>V//</i>		
						1 ++	_			
	## ##		wT	0	2	15		<i>V//</i>	INORGANIC CLAY: gray;	high plasticity; 20% very fine to
			VVI	"	3 2	40	СН	<i>V//</i>	fine sand; no odor; soft	·
					-	16			3	
						17-	_	1//	3	
						++	_		3	
						18	-			
						1 ,, ++	\dashv			
						19		<i>V/</i>		
						20				high placticity: 20% year fine to
			WT	0	1 1		CH		iNORGANIC CLAY: gray; fine sand; no odor; very s	high plasticity; 20% very fine to oft
					1	21-			2	
						,,,		İ		·
					ļ	22				

WELL/BORING LOCATION MAP	Delta Environmental Consultants, Inc. WELL/BORING: B-4/MW-4
PANCE ROBIN COMMENT	DATE: 4/24/2001 PROJECT: CW 91122 SAMPLING METHOD: Hollow Stem Auger SAMPLING METHOD: DM Split Spoon BORING DIAMETER: 8" LOCATION: 568 Peace Portal Drive CITY: Blaine STATE: WA DRILLER: Cascade DRILLING METHOD: Hollow Stem Auger SAMPLING METHOD: DM Split Spoon BORING DIAMETER: 8" WELL CASING: SCH 40 PVC 2" WELL SCREEN: 5 to 15' (0.010") SAND PACK: 3-16.5' (2X12)
MOISTURE MOISTURE MOISTURE MOISTURE	CASING ELEVATION 99.81 CASING ELEVATION 99.81 DATE: 5/3/2001 DWT 4.65 DESCRIPTION/LOGGED BY: SHAWN MADISON
ALGS WT 0 0 0 0	SILTY SAND: dark graynish brown; 25% fines; very fine to fine sand; lose; no tph odor CH INORGANIC CLAY: gray; high plasticity; 20% very fine to fine sand; very soft INORGANIC CLAY: gray; high plasticity; 20% very fine to fine sand; very soft INORGANIC CLAY: gray; high plasticity; 20% very fine to fine sand; very soft INORGANIC CLAY: gray; high plasticity; 20% very fine to fine sand; very soft

Well Development Data Sheet

		The state of the s		Comments (Odor, Sheen, Clarity)	TPH LIKE OCLUT											
'n	,			Development Method	اخا	11	1	*								
Chavron Site No 9-(17)		MC		Actual Purge	///		(% (%	17.8								
Sign of the state		Field Rep.		Purge Volume	(1,511	19,176 19.0	19.07	1.59								
	~1	Ψ1		Multiplier For Ten Well.	1,7	7.7	1,71	<u></u>								
				WD	(IWD-DIW)	11.19	10, 62	10.35							***************************************	
0 (17)	(S)	Blocked at		Depth To	Water (DTW)	4.78	0.40	4.65	y							
;	S. S.		1	Total Well	(IWD)			بغرا		***************************************						
	Delta Project No. CO-LILO	Site Address	Date 5 / 5		Well I.D.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, m, r,	M. 2. / 4	38				•			


MONITORING WELL SURVEY FORM

CHEVRON STATION NO. 9-1122	DELTA PROJECT NO. CW91/22
ADDRESS	FIELD PERSONNEL SM
Blame con	DATE 5/3//
**************************************	SITE PLAN TO THIS SHEET**************

					L OUEOK
LOCATION	ELEVATION	TOP	MIDDLE	BOTTOM	CHECK
WW-/	100.00	2,52	1.92	1,32	0,60 0,60
WW-Z	97,01	5.03	4.91	4.79	0,12 0,12
Nw-3	98.29	4,13	3.63	3 13	0, 500,50
1611-436	10m) 98,29	7,03	691	6.79	C.12 0.12
mw- 4	99.81	5,74	5,39	5.04	0.35 0.35
7/100					
		•			
		10	C	d l	
		1			
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
		\ <u>\</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6	
		\	10	9	

ۇراقى دا	Manifest Date of Shipments	Responsible for Pa		naporter	us Soils Truck #:	Facility :		Wanii	- RETW (1975)	Load
ľ	pass or ambinent	Generato	•	•		EOA	0	3395		001
ŀ	Generator's Name and Billing	Address:			Cenerator's I	'hone #:		Generator's US	EPA ID No.	
1	CHEVRON PRODU			-	Person to Cor	x les y the				<u> </u>
1	P.O. BOX 6004	ŧ		Ì		HUNTER				
	ROOM V-1144				FAX#:			Customer Accot	int Number v	sith TPS:
۱	SAN RAMON, CA	94583-071	ւշ Մ	SA	(925)	842-859	8	10013	73	
T	Censultant's Name and Billing				Consultant's					
ı	DELTA ENVIRON				(425) Person to Co	450-942	<u> </u>			
	1200 - 112th	AVENUE NE				MADISON				
	SUITE #C146				FAX#:			Customer Acco		vith TPS:
	BELLEVUE, WA	98004	ប	SA	(425)	450-883	7	3DELT	EN	
ľ	Generation Site (Transport fro		•		Sile Phone #			BTEX Levels		
	CHEVRON STATE		2		Person to Co	210.31		TI'H		·····
.	568 PEACE PO	RTAL DRIVE			reisen to Co	maci.		Levels		
an an					FAX#:			AVG.		
Consultan	BLAINE, WA O	200 <u>0</u>	<u> </u>	SA				Levels		
ŝ	Designated Facility (Transport	tos: luanie & addresss			Facility Phor	• •		Facility Permit	Numbers	
1	TPS Technolog	gies Inc.			(253)	<u> 584-8430</u>				_
and/or	2800 - 104th	Street Co	urt South	•	1	maca Avelino	i ,	Rica	Nelson	
					FAX#:		· · · · · · · · · · · · · · · · · · ·			
Generator	Lakewood, WA	98499	<u> </u> L	ISA	(253)	<u>584-8309</u>				
ŝ	Transporter Name and Mailin			•	Transporter'			Transporter's U	IS EPA ID No.	.;
,	ENVIROTECH S				Person to Co	922-939	<u>۔</u>	Transporter's I	χγΓ No.:	
3601 - 121st ST. SW					DON H					
		-6009		JSA		513-583	:Q	Cuther &S	EN Number	with TFS
	LYNNWOOD, WA	Moisture Content	Contaminated by		<u> </u>	escription of Del		Gross Weight		
	Description of Soil		Gas D	- Vhbio	A. G.(y.)	compact or ov.	,			
	Sand (1) Organic (1) Clay (2) Other (2)	0 - 10%	Diesel □ Other □	5	- 1	pums		28540	24680	386
	Sand Cl Organic Cl Clay Cl Other Cl	0 - 10% C) 10 - 2 0% CI	Cas O Diesel O			NET 7	ONS=	1.93		
	Clay 2 Other C	20% - over 🗆	Other 🗅	1				11-6-2		<u> </u>
entroller engen energen en executables des sections es sécules de la chéric de la conflicte de	Generator's and/or consul Sheet completed and certi, any way. Print or Type Name:	tant's certification: fied by me/us for the Generator	I/We certify that to Generation Site s Consultant	hown ab	ferenced here ove and noth	ning has been add	ely from led or do	those soils desc ne to such soil	ribed in the that would	Soil Dat alter it i
]	->						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Transporter	- 1 10 1 10 11 11 11 11 11 11 11 11 11 11									
Trans	DOTT R. (IWDSAY		\$40 (garle and date	1.5			106	18 0
ig Facility	Discrepancies:	the master of the entire	agging his this	Stage swen	nt as nated at	nove:				
Recycling	Recycling Facility certifies	the receipt of the soil of	overea by this man	ijesi exce.	pr as notes at grature and date	1				7
*	Print or Type Name	Malan		31)				1/11		6//
Rec	R. Avelino/R.	Merbon		1		see	~/ /	mener		1

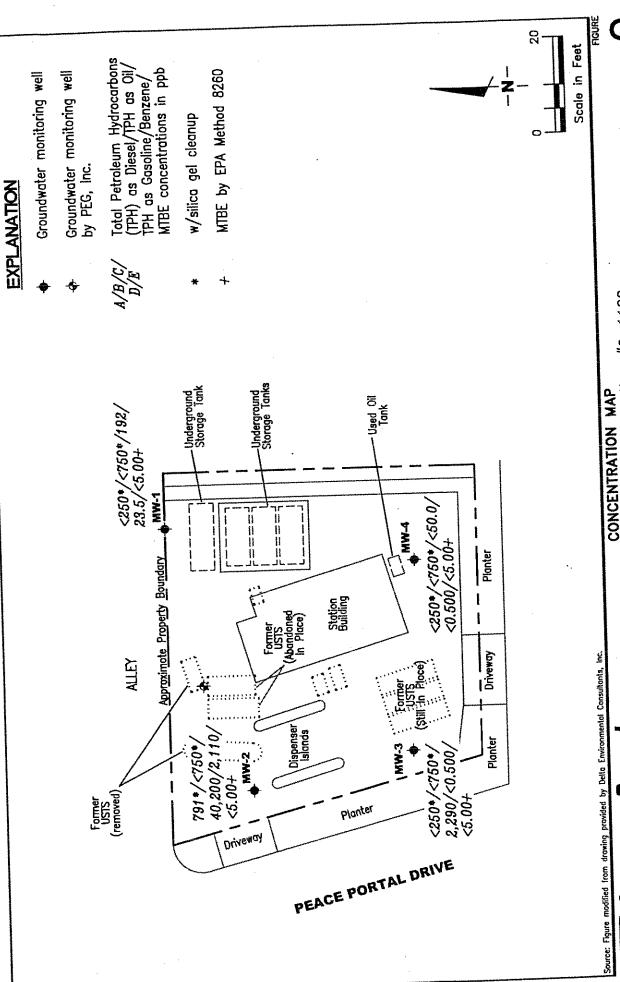
ATTACHMENT C GROUNDWATER MONITORING AND SAMPLING DATA

GETTLER - RYAN

(925) 551-7555

6747 Sierra Ct., Suite J Dublin, CA 94568

POTENTIOMETRIC MAP Chevron Service Station #9—1122 568 Peace Portal Drive Blaine, Washington


2001 June 19,

REVISED DATE

386756 FILE NAME: P:\Enviro\Chevron\9-1122\Q01-9-1122.DWG | Layout Tab: Pol

REVIEWED BY

PROJECT NUMBER

Chevron Service Station #9-1122 568 Peace Portal Drive

June 19, 2001

Blaine, Washington

REMSED DATE

386756 FILE NAME: P:\Enviro\Chevron\9-1122\001-9-1122.DWG | Layout Tab: Cont REMEWED BY PROJECT NUMBER

(925) 551-7555

6747 Sierra Ct., Suite J Dublin, CA 94568

GETTLER - RYAN

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-1122
568 Peace Portal Drive

ပ္	
Peace Portal Drive	Slaine, Washington
568	B

WELL ID/	DATE	WI/O	GWE	G-HALD	TPH-O	TPH-G	B (ppb)	T (bpb)	E (ppb)	X (ppb)	MTBE (ppb)	D, Lead (ppm)
ToC* (ft.)		(12)	(JE)	(add)								
MW-1 100.00	05/03/01	8.34 9.42	91.66	 <250 ¹	 <750 ¹	192	23.5	6.46	2.49	5.80	 <5.00/<5.00 ³	<0.001004
MW-2 97.01	05/03/01	3.72	93.29 92.97	79112	 <750 ¹	40,200	2,110	1,160	- 12	3,200	206/<5.00³	 <0.00100 ⁴
MW-3 98.29	05/03/01 06/19/01	4.37	93.92 93.71	 -7250	<7501	2,290		0.550	3.25	6.15	 <5.00/<5.00³	 <0.00100 ⁴
MW-4 99.81	05/03/01	4.65 5.14	95.16 94.67	<250	<7501	<50.0	<0.500	<0.500	 <0.500	<	 <5.00/<5.00³	 <0.00100 ⁴
Trip Blank TB-LB	06/19/01	;	ŧ	ı	į	<50.0	<0.500	<0,500	<0.500	<1.00	<5.00	ł

						1	>	MTRE	D. LEAD
	T Day	TPH.O	TPH-C	=	_	ď	4		
	7-11-1	****			302 3	000	<u>_</u>	1	0.00100
	950	750	20.0	0.500	0.50	0000			
Standard Laboratory Reporting Limits:	007	00.	2.22	-		***	90		1
	000	1 000	1 000		40	₽£	P 7		
MTCA Method A Cleanup Levels: 1,000		Timen	A strong			1000			FPA 6020
THE STATE OF THE S		. Evtended			WTPH-G an	WTPH-G and EPA 8021			174 F. CO.
Current Memon: Wilkin-D	WILTI-IL	FLATCHUCG							

Groundwater Monitoring Data and Analytical Results Table 1

Chevron Service Station #9-1122 568 Peace Portal Drive Blaine, Washington

EXPLANA TIONS:

Groundwater monitoring data prior to June 15, 2001 was provided by Delta Environmental Consultants, Inc.

E = Ethylbenzene B = Benzene T = Toluene DTW = Depth to Water TOC = Top of Casing

MTBE = Methyl tertiary butyl ether X = Xylenes

D. Lead = Dissolved Lead

[WAC 173-340-720(2)(a)(I), as amended 12/93]. MTCA = Model Toxics Control Act Cleanup Regulations -- = Not Measured/Not Analyzed (ppm) = Parts per million (ppb) = Parts per billion

TOC elevations have been surveyed in feet relative to an arbitrary datum..

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel

GWE = Groundwater Elevation

TPH-O = Total Petroleum Hydrocarbons as Oil

TPH-D and TPH-O with silica gel cleanup.

Laboratory report indicates the results in the diesel organics range are primarily due to overlap from a gasoline range product.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize. Purge water is treated by filtering the water through granular activated carbon and is subsequently discharged to the ground surface at the site.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used for all samples. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

WELL MONITORING/SAMPLING FIELD DATA SHEET

	9 1155 11	C. FIELD DE CO.	•	386756	
Chevron Facility	1 9-1127 m	· h.	Job#: —	19-0]	
Address: 5 t	8 Peace Portal	<u> </u>	Date:		
city: Blair	e, WA		Sampler:	71-	
			ok		
Well ID	MW I	Well Condition	15		NO.
Well Diameter	in.	Hydrocarbon	Ø ft.	Amount Bailed	/O (gal.)
	15.50 m	Thickness:	2" = 0.17	3" = 0.38	4" = 0.66
Total Depth	9.42 #	Factor (VF)	6" = 1.	50 12" = 3).8U
Depth to Water		1			me: 3 (gal)
	6.08 x	vf <u>17</u> = 1	X 3 (case volume) =	Estimated Purge Volu	Ime:
Purge	Disposable Bailer	, Sa	ampling	posable Bailer	
Equipment:	Bailer	, γ	Bai	ler	American April 1999
:	Stack Suction		Pre Gr	essure Bailer ab Sample	
	Grundfos		Other: _		*
	Other:			/ hal/	
Starting Time:	13:05	Weather	r Conditions:	SUNNY	. M
Starting Time:	13:20		color: <u>Clear</u>	0001	
Purging Flow Re	LU.		nt Description:	Volume:	. (gal
Did well de-wat	1.71	If yes;	Time:		vr ra ra
Time	Volume pH (gal.)	Conductivity	Temperature •C	12.0.	ORP Alkalinity mV) (ppm)
		7.81 544	17.2		
13:11	<u> </u>	<u> </u>	170		
13214	3 7.72		16.8		
			· · · · · · · · · · · · · · · · · · ·		
			INFORMATION RV. TYPE LAB	ORATORY	ANALYSES
SAMPLE ID	(#) - CONTAINER	REFRIG. PRESE	1.1		BTEX/MBE by 876
MM !	5 VOANTAL				WHENT W/SG
MW]	1 1 500 pl Pl	T V		Y	s.Lead
nwl	1 SOUME ITE		The second secon		and the second s
	The second secon	The second secon	***		
COMMENTS:			and the second s	A service of the serv	

ALMERA

9/97-fieldet.frm

WELL MONITORING/SAMPLING FIELD DATA SHEET

		FIELD DATA SHEET	•	
	Jan Francisco W. C.		386756	
Chevron Facility	# 9-1(22	Job#:	6-19-07	
Address: 568	Peace Portal Dr.	Date:	BWN	-
	re, WA	Sampler:	- bw-	
City: Ular			i .	
	MW 3	Well Condition:		
Well ID			cı. Amount Baile	d (gal.)
Well Diameter	in.	Hydrocerbon Thickness:	(product/water)	4" = 0.66
Total Depth	15.05	Volume 2" = 0.17	$3^n = 0.38$ $6^n = 1.50$	2" = 5.80
ŧ	4.58	Factor (VF)		<u> </u>
Depth to Water	10 1157	1.78 x 3 (case vol	ume) = Estimated Purge	Volume: 5 (gal.)
	10.47 x VF			· · · · · · · · · · · · · · · · · · ·
Purge	Disposable Bailer	Sampling Equipment:	Disposable Baile	
Equipment:	Bailer Stack	g da	Bailer Pressure Bailer	
<i>;</i> .	Suction		Grab Sample	
	Grundfos Other:		ther:	
		Weather Conditions	. sunny	
Starting Time:	12:00	Weather Color: Water Color:	(a)	Odor: Sight
Sampling Time:		Sediment Descripti	on:	(gal.)
Purging Flow Ra		If yes; Time:	Volume	*
Did well de-wat	ter?	Conductivity Temper	rature D.O.	ORP Alkalinity (mV) (ppm)
Time	Volume pH	Conductivity Tempe μmhos/cm •C		(mV) (ppm)
•	(gal.)	- 54.2	<u> </u>	
12.05	1.7 6.96	- <u>424</u> <u>20.3</u>		
12/10	3.4 6.89	$-\frac{411}{404}$		
12:15	5 6.83			

		LABORATORY INFORMA	ATION	ANALYSES
SAMPLE ID	(#) - CONTAINER	REFRIG. PRESERV. TYPE	LABORATORY	Gas/BTEX/Mthe 8260
MW3	5 VORVIAL	Y H4		Diss. Load
MW 3	1 500 mL Pl	1 1 1	T	THO) + EX+ W/56
MW3	1 Amber Z	· September Constitution · 167		
	The second secon	and the second s		
COMMENTS	the second secon	and the second s		
				9/97-fleidat.fm

2	58858	
Chain-of-Custody-KBCUIU AR. BRETT HUNTER. 125-842- 8695 Creek Analytical Creek Analytical Ar. Nawm	Heaver A Remarks A School of the Sample No.	Turn Around Time (Circle Choice) 24 Hrs. 48 Hrs. 5 Days 10 Days As Contracted
(Nume) P (Phone) 9 NOTE!	SON SAN XXXX	Date/Time iced Y/N Date/Time iced Y/N Date/Time iced Y/N
Idel: DNo Chevron Co Charge Cort Charge Cort Charges Sample Organics (B270)	Organization Organization Sy (Signature)	
to Chevron Co	Purperble Holocarbons Purperble Holocarbons (8015) Purperble Holocarbons (8010) Purperble Holocarbons (8010)	Received By (5) Received By (1) Recieved For
Chevron Facility Number # 9-112 Chevron Facility Number # 9-112 Consultant Project Number \$8.67 Consultant Project Number \$8.67	### 6747 9447 876 67447 97	Organization Date/Time Organization Date/Time Organization Date/Time
do J	25)842 - 8370 25)842 - 8370 25)842 - 8370 25)842 - 8370 25)842 - 8370 25)842 - 8370 27 - 7 - 10	S) AB P

ź

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 Fast 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Spokane

Gettler-Ryan Inc. - Dublin 6747 Sierra Court Suite G Project: Chevron #9-1122

Project Number: 386756

Reported:

07/09/01 15:30

Project Manager: Deanna Harding Diesel Hydrocarbons (C12-C24) and Heavy Oil (C24-C36 by WTPH-D (extended) with Silica Gel Clean-up North Creek Analytical - Bothell

	No	orth Cree	к Апац	(icai - D	0 + 12 +				
	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Sampled: 06/19/01 12:0	0 Received	: 06/22/01	09:15			07/06/01	WTPH-D	
MW-1 (B1F0573-02) Water Diesel Range Hydrocarbons	ND	0.250	mg/l	1	1F26017	06/26/01	#	T.	
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	ND	0.750 50-150	*	<u></u>	"	H	H	Ħ	
Surrogate: 2-FBP	84.9 % 82.4 %	50-150			"	n	**		
Surrogate: Octacosane	Sampled: 06/19/01 12:	00 Receive	d: 06/22/01	09:15	150(017	06/26/01	07/06/01	WTPH-D	D-0
MW-2 (B1F0573-03) Water Diesel Range Hydrocarbons	0.791	0.250 0.750	mg/I	i *	1F26017	*	bs	H	
Heavy Oil Range Hydrocarbon	s ND 85.7 %	50-150			P	H	H	"	
Surrogate: 2-FBP Surrogate: Octacosane	83.8 %	50-150		_		•			
MW-3 (B1F0573-04) Water	Sampled: 06/19/01 12	:00 Receive	ed: 06/22/0	1 09:15	1F26017	06/26/01	07/06/01	WTPH-D	
Diesel Range Hydrocarbons	ND	0.250 0.750	m <u>e</u> /1	1	*	*	11	#	
Heavy Oil Range Hydrocarbon	ns ND 84.3 %	50-150			ii e	,,	#	,, H	
Surrogate: 2-FBP Surrogate: Octacosane	84.6 %	50-150			**				
MW-4 (B1F0573-05) Water	Sampled: 06/19/01 12	2:00 Receiv	ed: 06/22/0	01 09:15	1F2601	7 06/26/01	07/06/01	WTPH-D	
Diesel Range Hydrocarbons	ND	0,250 0,750	mg/1	,	h	#	Ħ	"	
Heavy Oil Range Hydrocarbo	86.1 %	50-150	<u> </u>		" "	ti Li	, #	н	
Surrogate: 2-FBP Surrogate: Octacosane	87.7 %	50-150							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain custody document. This analytical report must be reproduced in its entire

Kirk Gentiron For Robert Greer, Project Manager cinternal Albanian in 1962

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, DR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, DR 97701-5711 541.383.9310 fax 541.382.7588

Portland

Gettler-Ryan Inc. - Dublin 6747 Sierra Court Suite G

Project: Chevron #9-1122

Reported:

Dublin CA, 94568

Project Number: 386756 Project Manager: Deanna Harding 07/09/01 15:30

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

	No	rth Cree	k Analy	tical - B	otneii				
		Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result								
00\ 3\/-tor	Sampled: 06/19/01 12:0	0 Received	: 06/22/01	09:15	1F25024	06/25/01	06/25/01	EPA 8260B	
144-1 (7) 12 0-1-1	ND	5.00	ug/l	11	1723024	W	A ,	11	
Methyl tert-butyl ether	98.5 %	73-137			r,	,,	и	н	
Surrogate: 1,2-DCA-d4		75-124			,,	,,	14	H	
Surrogate: Toluene-d8	102 %	77-120							
Surrogate: 4-BFB	- cupint 17s	nn Receive	d: 06/22/01	09:15			06/25/01	EPA 8260B	
MW-2 (B1F0573-03) Water	Sampled: 06/19/01 12.	5.00	ug/l	1	1F25024	06/25/01	06/23/01		
Methyl tert-butyl ether	IAD	73-137			Ħ	. #	,,	"	
Surrogate: 1,2-DCA-d4	111%	75-124			"	rt	,,	n i	
Surrogate: Toluene-d8	100 %	77-124		process of	. "	H			
Surrogate: 4-BFB	107 %		· 04/22/0	1 09-15					
	Sampled: 06/19/01 12	:00 Receive	:d: U0/22/0	1	1F25024	06/25/01	06/25/01	EPA 8260B	
MW-3 (B1F0573-04) Water	ND	5.00	ug/l		,,	. #/	п		
Methyl tert-butyl ether	104 %	73-137			#	#	,,	н .	
Surrogate: 1,2-DCA-d4	102 %	75-124				, a	" ,	The first beautiful to	
Surrogate: Toluene-d8	98.0 %	77-120							
Surrogate: 4-BFB	r Sampled: 06/19/01 1:	2:00 Receiv	ed: 06/22/	01 09:15		0.456/01	06/25/01	EPA 8260B	
MW-4 (B1F0573-05) Wate	ND	5.00	ug/I	1	1F2502		n 001251-0-	Ħ	
Methyl tert-butyl ether	140	73-137				PF			
Surrogate: 1,2-DCA-d4	104 %				н	. #	n	и	
Surrogate: Toluene-d8	98.5 % 100 %				"	,			
Surrogate: 4-BFB	100 70	,, •=•			•			. :	
Davi Same									

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain custody document. This analytical report must be reproduced in its entiret

Kirk Gendron For Robert Greer, Project Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

Portland

Gettler-Ryan Inc. - Dublin

Project: Chevron #9-1122

6747 Sierra Court Suite G

Dublin CA, 94568

Project Number: 386756

Reported:

07/09/01 15:30

Project Manager: Deanna Harding Gasoline Hydrocarbons by NWTPH-Gx and BTEX,M by EPA Method 8021B

North Creek Analytical - Spokane

	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte				00.15					
MW-3 (B1F0573-04) Water	Sampled: 06/19/01 12:00	Received		1 03:13	1060229	06/29/01	06/29/01	NWTPH-Gx/8021B	
4144-2 (D11 02:0 0.)	2290	50.0	ug/l		1000223	#	*		
GRO as Gasoline	ND	0.500	*				*	H	
Benzene	0.550	0.500					Ħ	¥	
Toluene	3,25	0.500	Ħ	Ħ		**	*	*	
Ethylbenzene	6.15	1.00	Ħ	**	*	R	•	*	
Xylenes (total)	ND	5.00	W	#				#	S-0
Methyl tert-butyl ether		50-150			*			n	5-0
Surrogate: 4-BFB (FID)	20111	56-142			#	te .			
Surrogate: 4-BFB (PID)			· ccmaii	1 00.15					
MW-4 (B1F0573-05) Water	Sampled: 06/19/01 12:0	0 Receive	d: U6/22/	01 07.15	1060229	06/29/01	06/29/01	NWTPH-Gx/8021B	
	ND	50.0	ug/l	1	1000227	#	*	■ January State	
GRO as Gasoline	ND	0.500	#		*	in		Ħ	
Benzene	ND	0.500	*		*	Ħ	Ħ	# '	
Toluene	ND	0.500				27-1 4		*	
Ethylbenzene	ND	1.00	Ħ			Ħ	#	₩	
Xylenes (total)	ND	5.00	**	*			31	Ħ	
Methyl tert-butyl ether	96.0 %	50-150			ti.	,,	. #	Ħ	
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	96.0 % 110 %	56-142			n	μ			

North Creek Analytical / Bothell

The results in this repart apply to the samples analyzed in accordance with the chain custody document. This analytical report must be reproduced in its entire

Kirk Gendron For Robert Greer, Project Manager

Sugaro 581 de avela de 180

North Creek Analytical, Inc. Page 6 of Environmental Laboratory Network

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Court Suite G Dublin CA, 94568

Project: Chevron #9-1122

Project Number: 386756

Project Manager: Deanna Harding

Reported: 07/09/01 15:30

Dissolved Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		Of the Cros	_				%REC		RPD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	Limits	RPD	Limit	Notes
Batch 1G06036: Prepared 07/06/01	Using E	PA 3005A		, ,			<u></u>			
Blank (1G06036-BLK1) Lead	ND	0.00100	mg/l	<u>, 100, 100, 100, 100, 100, 100, 100, 10</u>						ngga pagaina (da la
LCS (1G06036-BS1) Lead	0.189	0.00100	mg/l	0.200	A CONTRACTOR OF THE PROPERTY O	94.5	80-120			
LCS Dup (1G06036-BSDI) Lead	0.185	0.00100	mg/l	0,200		92.5	80-120	2.14	20	
Matrix Spike (1G06036-MS1)	0.198	0.00100	mg/l	0.200	ND	B1F0532- 98.8	75-125	<u></u>		
Matrix Spike Dup (1G06036-MSD1)	0.192	0.00100	mg/l	0.200	ND	B1F0532 95.8	-02 75-125	3.08	20	

North Creek Analytical

The results in this report apply to the samples analyzed in accordance with the chain c custody document. This analytical report must be reproduced in its entirety

Kirk Gendron For Robert Greer, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 8 of I

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7589

Gettler-Ryan Inc. - Dublin 6747 Sierra Court Suite G

Project: Chevron #9-1122

Project Number: 386756 Project Manager: Deanna Harding Reported:

07/09/01 15:30

Gasoline Hydrocarbons by NWTPH-Gx and BTEX,M by EPA Method 8021B - Quality Control Dublin CA, 94568 North Creek Analytical - Spokane

	INO	LIII Cleer		-					RPD	
	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
Analyte										
Batch 1060229: Prepared 06/29/0	1 Using EP	A 5030B			<u></u>	•		*		
Biank (1060229-BLK1)			ug/l							
GRO as Gasoline	ND	50.0	# #							
Benzene	ND	0.500	a							
Toluene	ND	0.500	*							
Ethylbenzene	ND	0.500				-				
Xylenes (total)	ND	1.00				i				
Methyl tert-butyl other	ND	5.00		25.0		94.4	50-150			
	23.6		#	25.0 25.0		115	56-142			
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	28.7		"	25.0						
	2	· .					85-115		,	,
LCS (1060229-BS1)	960	50.0	ug/l							
GRO as Gasoline			Ħ	25.0		126	50-150			
Surrogate: 4-BFB (FID)	31.5									
	en egit APP			10.0		94.4	85-115			
LCS (1060229-BS2)	9.44	0.500	ug/l			91.2	85-115			
Benzene	9.12	0,500	7	10.0		105	85-115			
Toluene	10.5	0.500	Ħ	10.0		104	85-115			
Ethylbenzene	31.3	1.00		30.0		100	70-120			
Xylenes (total)	10.0	5.00	#	10.0			56-142			
Methyl tert-butyl ether	27,5		н	25.0		110	30-142		. •	
Surrogate: 4-BFB (PID)	27.5				Sourc	e: S106110	-04			
Duplicate (1060229-DUP1)					NE				50	
GRO as Gasoline	69.3				NI				50	
Benzene	ND		,		NI				50	
Toluene	ND				NI				50	
Ethylbenzene	0.561		_		NI				50	
Xylenes (total)	1.17		0		N				50	
Aylenes (total) Methyl tert-butyl ether	NE	5.0	U			99.2	50-15	0	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
	24.8	3	,,	25.0		99.2 110				
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	27.		"	25.	O	,10				

North Creek Analytical - Bothell COLUMN TO THE COLUMN

The results in this report apply to the samples analyzed in accordance with the chain o custody document. This analytical report must be reproduced in its entirety

Kirk Gendron for Robert Greer, Project Manager

Page 10 of 1 North Creek Analytical, Inc. Environmental Laboratory Network

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97808-7132

Portland 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541,383,9310 fax 541,382,7588

Gettler-Ryan Inc. - Dublin 6747 Sierra Court Suite G

Dublin CA, 94568

Project: Chevron #9-1122

Project Number: 386756

Project Manager: Deanna Harding

Reported: 07/09/01 15:30

Notes and Definitions

Results in the diesel organics range are primarily due to overlap from a gasoline range product.

The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference. D-08

RPD values are not controlled at sample concentrations less than 5 times the reporting limit. Q-02

This sample was laboratory filtered since it was not field filtered as is required by the methodology. Q-06

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds Q-30 S-02

present in the sample.

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

Not Reported NR

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

North Creek Analytical Bothell

The results in this report apply to the samples analyzed in accordance with the chain (custody document. This analytical report must be reproduced in its entiret

Kirk Gendron For Robert Greer, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 12 of 1

ATTACHMENT D LABORATORY ANALYTICAL METHODS AND REPORTS CHAIN-OF-CUSTODY DOCUMENTATION

ATTACHMENT D

Laboratory Analytical Methods

Analysis for TPH-gasoline was performed according to Northwest Method NWTPH-G. Analysis for TPH-diesel extended was performed according to Northwest Method NWTPH-Dx with silica gel cleanup. Benzene, toluene, ethylbenzene, and xylenes analysis was performed in accordance with EPA Method 8021B. Methyl tert-butyl ether analysis was performed in accordance with EPA Method 8021B with confirmation by EPA Method 8260. A methanol solvent extraction was used for the WTPH-G analysis with final detection by gas chromatography using a flame-ionization detector. A headspace or purge and trap technique was utilized for BTEX analysis. Final detection was by gas chromatography using a photoionization detector. Analysis for total lead and dissolved lead was performed according to EPA 6000/7000 Series Methods.

Portland 9405 SW Nimbus Avanue, Beaverton, OR 97008-7132 503-906-9200 fax 503-906-9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Delta Environmental 1200 112th Ave. NE C146 Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-1-5	B1D0684-01	Soil	04/24/01 09:55	04/25/01 16:30
B-2-5	B1D0684-04	Soil	04/24/01 12:10	04/25/01 16:30
_	B1D0684-08	Soil	04/24/01 15:00	04/25/01 16:30
B-3-5	B1D0684-11	Soil	04/24/01 17:00	04/25/01 16:30
B-4-5	B1D0684-14	Soil	04/24/01 12:00	04/25/01 16:30
Stockpile	D1B000111			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwaite, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 1 of 11

503.906.9200 fax 503.906.9210

Bond 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Delta Environmental 1200 112th Ave. NE C146

Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
R-1-5 (B1D0684-01) Soil	Sampled: 04/24/01 09:55	Received:	04/25/01 16:3	30					
Gasoline Range Hydrocarb		5.00	mg/kg dry	1	1D30013	04/30/01	04/30/01	NWTPH-Gx/8021B	
Benzene	ND	0.0500	44	17	H	şı	14	Ħ	
Toluene	ND	0.0500	H	**	fi.	14	#1) 1	
Ethylbenzene	ND	0.0500	35	11	Ħ	**	14	11	
Xylenes (total)	ND	0.100	H	"	Ħ	н	8	B	
	81.1%	50-150			н	11	"	"	
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	78.0 %	50-150			se	#	Ħ	11	
B-2-5 (B1D0684-04) Soil	Sampled: 04/24/01 12:10	Received:	04/25/01 16:	30	,				
Gasoline Range Hydroca		10.0	mg/kg dry	2	1D30013	04/30/01	04/30/01	NWTPH-Gx/8021B	
Benzene	1.42	0.100	н	**	"	**	**	51	
Toluene	2.51	0.100	н	Ħ	49	H	**	Pt.	
Ethylbenzene	1.74	0.100	**	n	ii.	n	В	#	
Xylenes (total)	12.4	0.200	v	st .	Ħ	15	**	В	
	121 %	50-150			**	n	n	tr.	
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	91.3 %	50-150			"	"	n	17	
B-3-5 (B1D0684-08) Soil	Sampled: 04/24/01 15:00	Received:	04/25/01 16:	30					
Gasoline Range Hydroca	*******	5.00	mg/kg dry	I	1D30013	04/30/01	05/01/01	NWTPH-Gx/8021B	
Benzene	ND	0.0500	B	н	В	11	H	+f	
Toluene	0,0657	0.0500	11	13	11	11	31	Ħ	
Ethylbenzene	ND	0.0500	16	0	Ħ	#	H	ŧi	
Xylenes (total)	0.220	0.100	e	#	н	ŧI	11		.,,
	79.7 %	50-150			,,	"	n	***	
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	78.2 %	50-150			n	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Delta Environmental

1200 112th Ave. NE C146 Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-4-5 (B1D0684-11) Soil	Sampled: 04/24/01 17:00	Received: (04/25/01 16:	30					
Gasoline Range Hydrocarbo	ns ND	5.00	mg/kg dry	1	1D30013	04/30/01	05/01/01	NWTPH-Gx/8021B	
Benzene	ND	0.0500	Ħ	Ħ	Ħ	ft	1 3	#	
Toluene	ND	0.0500	H	"	н	**	В	ji	
Ethylbenzene	ND	0.0500	\$ 7	*	11	R	11	11	
Xylenes (total)	0.109	0.100	и	**	#	ŧτ	11	#	
	76.7 %	50-150	* · · · · · · · · · · · · · · · · · · ·		Ħ	25	11	"	
Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	79.2 %	50-150			st	#	н	"	
Stockpile (B1D0684-14) So	oil Sampled: 04/24/01 12	:00 Receiv	ed: 04/25/01	16:30				NUCTRA C. (6611D	
Gasoline Range Hydrocar	bons 134	20.0	mg/kg dry	4	1D30013	04/30/01	04/30/01	NWTPH-Gx/8021B	
Benzene	0.642	0.200	# 1	It	T!	н		"	
Toluene	0.954	0.200	н	a	Ħ	**	*1		
Ethylbenzene	1.01	0.200	ŧ1	Ħ	12	**	19	Ħ	
Xylenes (total)	7.96	0.400	**	tt	"	ß	n	H	
Surrogate: 4-BFB (FID)	120 %	50-150	***************************************		71	st	"	n	
Surrogate: 4-BFB (PID)	87.1 %	50-150			"	**	"	#	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwaite, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 480, Bothell, WA 98011-8244 425,420 9200 Tax 425,420.9210
Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924,9200 Tax 509.924,9200 Fax 509.924,9200 Fax 509.924

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906,9200 fax 503,906,9210 541,383,9310 fax 541,382,7588

Delta Environmental

1200 112th Ave. NE C146

Project: Chevron #9-1122

Bellevue WA, 98004

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

	•								
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1-5 (B1D0684-01) Soil	Sampled: 04/24/01 09:55	Received: ()4/25/01 16:	30					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	1E04003	05/04/01	05/05/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbo	ns ND	25.0	t+	11	н	ff ff	ft		
Surrogate: 2-FBP	77.2 %	50-150		-,	ž†	H	**	"	
Surrogaie: 2-r br Surrogate: Octacosane	88.2 %	50-150			"	"	"	fr	
B-2-5 (B1D0684-04) Soil	Sampled: 04/24/01 12:10	Received:	04/25/01 16:	30					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	1E04003	05/04/01	05/04/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbo		25.0	н	14	B	f	†		*** **********************************
	84.0 %	50-150			11	#	11	"	
Surrogate: 2-FBP Surrogate: Octacosane	93.9 %	50-150			"	11	"	u	
B-3-5 (B1D0684-08) Soil	Sampled: 04/24/01 15:00	Received:	04/25/01 16:	30					
Diesel Range Hydrocarbons		10.0	mg/kg dry	1	1E04003	05/04/01	05/04/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbo		25.0	fτ	14	15	15			
Surrogate: 2-FBP	80.4 %	50-150	,		n	H	"	"	
Surrogate: Octacosane	91.3 %	50-150			н	#	н	"	
B-4-5 (B1D0684-11) Soil	Sampled: 04/24/01 17:00	Received:	04/25/01 16:	:30					,
Diesel Range Hydrocarbons	·····	10.0	mg/kg dry	i	1E04003	05/04/01	05/04/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbo	•	25.0	**	11	11	н	**	ff	
	81.9 %	50-150			**	17	11	н	
Surrogate: 2-FBP	90.6 %	50-150			"	"	"	"	
Surrogate: Octacosane		no Dessir	a. 04/25/01	1.16+30					
Stockpile (B1D0684-14) S				1 10.30	1E04003	05/04/01	05/04/01	NWTPH-Dx SG	
Diesel Range Hydrocarbo		10.0	mg/kg dry	ž 11	1E04003	U2/U4/U1	#	и	
Lube Oil Range Hydrocarb		25.0						"	.,,
Surrogate: 2-FBP	82.6 % 92.8 %	50-150 50-150			"	,,	n	24	
Surrogate: Octacosane	92.8 %	20-120							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, 0R 97008-7132 503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, 0R 97701-5711

541.383.9310 fax 541.382.7588

Delta Environmental 1200 112th Ave. NE C146 Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Rej Result	oorting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Stockpile (B1D0684-14) Soil	Sampled: 04/24/01 12:00	Receiv	ed: 04/25/01	16:30					
Lead	6.40	0.370	mg/kg dry	1	1E02027	05/02/01	05/03/01	EPA 6020	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwaite, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 5 of 11

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Delta Environmental 1200 112th Ave. NE C146 Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1-5 (B1D0684-01) Soil	Sampled: 04/24/01 09:55	Received:	04/25/01	16:30					
Dry Weight	78.7	1.00	%	l	1D30031	04/30/01	05/01/01	BSOPSPL003R07	
B-2-5 (B1D0684-04) Soil	Sampled: 04/24/01 12:10	Received:		16:30		0.4/20/01	05/01/01	BSOPSPL003R07	
Dry Weight	80.4	1.00	%	1	1D30031	04/30/01	05/01/01	B30131 2003 Ro	
B-3-5 (B1D0684-08) Soil	Sampled: 04/24/01 15:00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16:30	11030031	04/30/01	05/01/01	BSOPSPL003R07	
Dry Weight	76.5	1.00	%	16.30	1030031	04550161	0		
B-4-5 (B1D0684-11) Soil		0.000.000.000		10:30	1D30031	04/30/01	05/01/01	BSOPSPL003R07	
Dry Weight	72.2	1.00		1	1D30031	04/30/01	03/01/01	1 00.010.	
Stockpile (B1D0684-14) S	Soil Sampled: 04/24/01 12	2:00 Recei	ved: 04/2:	5/01 16:30				500 BORY 003 BOT	
Dry Weight	77.3	1.00	%	1	1D30031	04/30/01	05/01/01	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwaite, Project Manager

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Delta Environmental

Project: Chevron #9-1122

1200 112th Ave. NE C146 Bellevue WA, 98004

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1D30013: Prepared 04/30/01	Using El	PA 5030B	(MeOH)			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				
Biank (1D30013-BLK1)									<u></u>	
Jasoline Range Hydrocarbons	ND	5,00	mg/kg wet							
Benzene	ND	0.0500	#1							
Coluene	ND	0.0500	"							
Ethylbenzene	ND	0.0500	łł							
(ylenes (total)	ND	0.100	0						.,	
Surrogate: 4-BFB (FID)	3.84		n	4.00		96.0	50-150			
Surrogate: 4-BFB (PID)	3,70		<i>\$\$</i>	4.00		92.5	50-150			
LCS (1D30013-BS1)			mg/kg wet	25.0		98.8	70-130	.,.	.,	,,
Gasoline Range Hydrocarbons	24.7	5.00	mg/kg wet				50-150			
Surrogate: 4-BFB (FID)	3.85		"	4.00		96.2				
Duplicate (1D30013-DUP1)						B1D0684-	-04	170		
Gasoline Range Hydrocarbons	179	10.0	mg/kg dry		151			17.0	50	
Surrogate: 4-BFB (FID)	5.91		n	4.97		119	50-150			
Duplicate (1D30013-DUP2)						B1D0684	-14	. 161	50	
Gasoline Range Hydrocarbons	114	20.0	mg/kg dry		134			16.1	30	
Surrogate: 4-BFB (FID)	6.25		Ħ	5.18		121	50-150			
Matrix Spike (1D30013-MS1)						B1D0684			,	
Benzene	0.453	0.0500	mg/kg dry	0.636	ND	71.2	60-140			
Toluene	0.487	0.0500	ff	0.636	ND	72.8	60-140			
Ethylbenzene	0.506	0.0500	11	0.636	ND	78.8	60-140			
Xylenes (total)	1.55	0.100	ţţ	1.91	ND	80.0	60-140			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Surrogate: 4-BFB (PID)	3.87		"	5.08		76.2	50-150			
Matrix Spike Dup (1D30013-MSD1)						B1D0684			20	
Benzene	0.506	0.0500	mg/kg dry	0.636	ND	79.6	60-140	11.1	20	
Toluene	0.547	0.0500	H	0.636	ND	82.2	60-140	11.6	20	
Ethylbenzene	0.563	0.0500	er	0.636	ND	87.8	60-140	10.7	20	
Xylenes (total)	1.74	0.100	Ħ	1.91	ND	90.0	60-140	11.6	20	
Surrogate: 4-BFB (PID)	4.40		H	5.08		86.6	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwaite, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | 425.420.9200 | fax 425.420.9210 | Spokane | East 11115 Montgomery, Suite B, Spokane, WA 99205-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906,9200 fax 503,906,9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Delta Environmental 1200 112th Ave. NE C146

Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

		I	Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1E04003:	Prepared 05/04/01	Using EF	A 3550B				,				
Blank (1E04003-BL	-K1)				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Diesel Range Hydrocai		ND	10.0	mg/kg wet							
Lube Oil Range Hydro		ND	25.0	ŧΙ					,	······································	
Surrogate: 2-FBP		7.78		+r	10.7		72.7	50-150			
Surrogate: Octacosano	?	8.52		п	10.7		79.6	50-150			
LCS (1E04003-BS1)										/////
Diesel Range Hydroca		58.9	10.0	mg/kg wet	66.7		88.3	50-150			
Surrogate: 2-FBP		8.61	The second secon	H	10.7		80.5	50-150			
Duplicate (1E0400)	3-DUP1)					Source:	B1D0684-	01			
Diesel Range Hydroca		ND	10.0	mg/kg dry		ND			72.6	50	Q-0:
Lube Oil Range Hydro		ND	25.0	**		ND			35.3	50	
Surrogate: 2-FBP	Administrative to the second s	10.9		,,	13.6		80.1	50-150			
Surrogate: Octacosan	e	11.8		f2	13.6		86.8	50-150			
Duplicate (1E0400.						Source:	B1E0089-	-02			
Diesel Range Hydroca		10.7	10.0	mg/kg dry		ND	,		47.3	50	
Lube Oil Range Hydro		ND	25.0	n		ND			6.94	50	
Surrogate: 2-FBP		8.46		j7	11.7		72.3	50-150			
Surrogate: Octacosan	e	10.2		и	11.7		87.2	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Delta Environmental 1200 112th Ave. NE C146 Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller

Reported: 05/08/01 16:29

Total Metals by EPA 6000/7000 Series Methods - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1E02027:	Prepared 05/02/01	Using El	PA 3050B								
Blank (1E02027-B)	LK1)										
Lead		ND	0.500	mg/kg wet							
LCS (1E02027-BS1	1)										
Lead		26.1	0.500	mg/kg wet	25.0		104	80-120			
Matrix Spike (1E0)	2027-MS1)					Source: I	B1D0782-	01			
Lead		299	1.82	mg/kg dry	19.2	262	193	70-130			Q-15
Matrix Spike Dup	(1E02027-MSD1)					Source: I	B1D0782-	01			
Lead	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	296	1.84	mg/kg dry	19.3	262	176	70-130	1.01	20	Q-15

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwaite, Project Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290
 fax 509.924.9290

Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

%REC

Delta Environmental

1200 112th Ave. NE C146 Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller

Reporting

Reported:

RPD

05/08/01 16:29

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 1D30031:	Prepared 04/30/01	Using Dr	y Weight						***************************************			
Blank (1D30031-Bl	LK1)											
Dry Weight		100	1.00	%			30,110 303,110 Julian Callet					

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwaite, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

1720 North Steek F KWY N, 3846 400, 003889, WA 9208-425, 420, 9200 fax 425, 420, 9210 fax 509,924,9200 fax 509,924,9290 Fortland 9465 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Delta Environmental 1200 112th Ave. NE C146

Bellevue WA, 98004

Project: Chevron #9-1122

Project Number: CW91122 Project Manager: Matt Miller Reported:

05/08/01 16:29

Notes and Definitions

Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit. Q-05

Analyses are not controlled on matrix spike RPD and/or percent recoveries when the sample concentration is significantly higher Q-15

than the spike level.

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

Sample results reported on a dry weight basis dry

Relative Percent Difference **RPD**

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeanne Garthwaite, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 11 of 11

Edition North Creek Pkwy N, Suite 400, Bothell, WA 98011-82225

Rahaptical Inc.

The control of the control

5			
PAA 420-7210	FAX 924-9290	FAX 906-9210	FAX 382-7588
UU24-U24 (C24)	(509) 924-9200	(503) 906-9200	(541) 383-9310

CHE	CHEVRON U.S.A., Inc. C	HAIN OF CUSTODY REPORT	Laboratory Turnaround
CHEVR	CHEVRON INFORMATION	CONSULTANI	Time
Facility Number: 9-17-7		Name: Telle EUC Project# CW9/122	
Site Address: 568 Rue	SGB Race Rotal Drive	* #CE UZ	3 Business Days
Ė	80	Bellevue 44	5 Business Days
j	Site Assesment	Phone: 425-480-8425 Fax: 450-2857	10 Business Days
Service Order:	Remediation		/
Cost Element: 75100100	□ o&M	Project Manager: WATT MuLE/2 Airbill#:	3 Day Air Samples
Chevron Project Manager:	GWM	Sample Collection by: Streen Wedgen	(Please Select One)
		□ AK □ OR □ WA 🥻 NW Series	
	MATRIX	PH-Cns PH-Cns PH-Cns PH-Cns + BTEX PH-Diesel PCBs Chiv PCBs Coniv	
SAMPLE IDENTIFICATION 1. 8-4-5	424 (76) 5 2 2	TT	NCA SAMPLE NUMBER
			77.5
364-15	V-24-1 1715		
न	1 <u>æ</u> / 4z4	*	The state of the s
5.			
7.			
8			
9.			
Relinquished by:	Firm: Date & Time	Received by: Firm; Date & Time Additional Comments:	O ARROT CO WICEDE NOT (2)
2. Bul L	- 4/25/b1 1636	, , , , , , , , , , , , , , , , , , ,	2.6C UPON acherot
3.		10.5 No. 10.5	

Chev CoC, Rev. 3.3, 2/99

Attachment D: Gettler Ryan, Inc., 2008

TRANSMITTAL

November 17, 2008 G-R #386756

TO:

Mr. Peter Catterall

SAIC

18912 North Creek Parkway, Suite 101

Bothell, Washington 98011

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 **RE:** Chevron Service Station

#9-1122

568 Peace Portal Drive Blaine, Washington

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
4	November 13, 2008	Groundwater Monitoring and Sampling Report Event of September 24 and 25, 2008

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your use</u> and <u>distribution to the following:</u>

Ms. Olivia Skance, Chevron Environmental Management Company, 6111 Bollinger Canyon Road, Room 3636, San Ramon, CA 94583

Mr. Issac Standen, WDOE, Southwest Regional Office, Toxics Cleanup Program, P.O. Box 47600, Olympia, WA 98504-7600

Mr. Mike Hill, Michael Hill's, Inc., 568 Peace Portal Drive, Blaine, WA 98230

а			C	O1 1 1			
п		Current	1to	('hack l	101	anolud	ואמו
	-	Current	13116		1.01	IIIIC IIII	CLI.

Enclosure

trans/9-1122-OS

Facility#: Chevron #8-1122 Date: 9.25.57 Address: 568 Peace Portal Drive CitySt:: Blaine, WA Status of Site: ### Churron Shifting, contents, location of drum: # Description Condition, Labeling Contents Location # Description Condition Labeling Contents Location ####################################			CHEVRON -	SITE CHEC	CK LIST		
Address: 568 Peace Portal Drive City/St: Blaine, WA Status of Site: ### Church Shift Please list below ALL DRUMS @ site: i.e., drum description, condition, labeling, contents, location of drum: # Description Condition Labeling Contents Location ### Description Condition Labeling Contents Location #### Description Condition Labeling Contents Location ###################################		Facility#:	Chevron #9-1122		Date: 😝 .	25 -4	-
City/St.: Blaine, WA Status of Site: ### Church Status Please list below ALL DRUMS @ site: i.e., drum description, condition, labeling, contents, location of drum: # Description Condition Labeling Contents Location ### Description Condition Labeling Contents Location ### Description Condition Labeling Contents Location ### Description Condition Description, well plug, well lock, etc.: #### Description Condition Description, condition, well plug, well lock, etc.: ###################################					Date, -y x	0001	
Status of Site: ## Church Shorton Please list below ALL DRUMS @ site: i.e., drum description, condition, labeling, contents, location of drum: # Description Condition Labeling Contents Location						<u> </u>	
Please list below ALL DRUMS @ site: i.e., drum description, condition, labeling, contents, location of drum: # Description Condition Labeling Contents Location # Description Labeling Contents Location Location # Description Labeling Contents Location Location		i		~~~ \\	1-10	<u> </u>	
Description Condition Labeling Contents Location	DRUMS:		w ALL DRUMS @ site: i.e., dr	um description			ntents
WELLS: Please check the condition of ALL WELLS @ site: i.e., well box condition, well plug, well lock, etc.: Well ID Well Box Bolts Well Plug Well Lock Other Mw-/ Mw-/ Mw-/ Mw-/ Mw-/ Pepted Mw-/ - 110111, 01				,	, idaboling, oo	incino,	
WELLS: Please check the condition of ALL WELLS @ site: i.e., well box condition, well plug, well lock, etc.: Well ID Well Box Bolts Well Plug Well Lock Other Mw-/ Mw-/ Mw-/ Mw-/ Peprinch Mw-/		#	Description	Condition	Labeling	Contents	Location
Well ID Well Box Bolts Well Plug Well Lock Other MW-/ Ok Ok Ok Ok MW-Z		1 0					
Well ID Well Box Bolts Well Plug Well Lock Other MW-/ Ok Ok Ok Ok MW-Z MW-Z MW-Z MW-Z MW-Z MW-Y MW-Y MW-Y MW-Y MW-Y MW-Y MW-Y MW-ST MW-GT MW-IDT Well Box Bolts Well Plug Well Lock Other			100				
Well ID Well Box Bolts Well Plug Well Lock Other MW-/ Ok Ok Ok Ok MW-Z MW-Z MW-Z MW-Z MW-Z MW-Y MW-Y MW-Y MW-Y MW-Y MW-Y MW-Y MW-ST MW-GT MW-IDT Well Box Bolts Well Plug Well Lock Other			1// Wris		<u> </u>		
Well ID Well Box Bolts Well Plug Well Lock Other MW-/ Ok Ok Ok Ok MW-Z MW-Z MW-Z MW-Z MW-Z MW-Y MW-Y MW-Y MW-Y MW-Y MW-Y MW-Y MW-ST MW-GT MW-IDT Well Box Bolts Well Plug Well Lock Other							
Well ID Well Box Bolts Well Plug Well Lock Other MW-1 MW-2 MW-2 MW-3 MW-4 Perhad Perhad Well Plug Well Lock Other WELLS:		ne condition of ALL WELLS @	site: i.e., well	box condit	ion, well plug	g, well lock,	
MW- OK			· · · · · · · · · · · · · · · ·				
mm 2 Reprod	4		<u> </u>				Other
mand Repared mm-9 mw-1e mw-1e mw-5t mw-5t mw-9t mw-10t Repared			OK.	OK	Do	DK	
MW	\mathcal{N}			1			
m - 1 Paplace mw - 1 mw - 5 mw - 5 mw - 5 mw - 6 mw - 7 mw - 8 mw - 10 mw -	V						<u>-</u> -
mw - le Paplaced mw - 7 mw - 8 mw - 8T mw - 9T mw - 9T mw - 10T W				Kepale			
MW-7 pw-6 mw-5T my-6T mw-9T mw-10T		/		1		Declared	
mw - ST mw - ST mw - GT mw - IOT					9.	' '	
MW-ST MW-GT MW-10T		1 ' ' /		 -		3	
my-GT mw-97 mw-10T							
		ا سسة					
			///				
Additional Comments/Observations:		_MV-10T	<u> </u>	Ψ	_W	V	
Additional Comments/Observations:				7	-		
Additional Comments/Observations:							
Additional Comments/Observations:							
Additional Comments/Observations:							••
Additional Comments/Observations:							
Additional Comments/Observations:							
Additional Comments/Observations:							
Additional Comments/Observations:							
Additional Comments/Observations:	Ł						
		Additional Comm	nents/Observations:				
	-						

November 13, 2008 Job #386756

Ms. Olivia Skance Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3636 San Ramon, CA 94583

RE: Event of September 24 and 25, 2008

Groundwater Monitoring & Sampling Report Chevron Facility #9-1122 568 Peace Portal Drive Blaine, Washington

Dear Ms. Skance:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure-Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any of the wells. Static water level data and groundwater elevations are presented in Table 1 and a Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical reports are attached. Purge water was treated by filtration through granular activated carbon and was subsequently discharged.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Douglas J. Lee Senior Geologist, L.G. No. 2660 Douglas J. Lee

Figure 1: Potentiometric Map

Groundwater Monitoring Data and Analytical Results Groundwater Monitoring Analytical Results -PAHs Groundwater Analytical Results - PCBs Groundwater Analytical Results - PAHs Table 1: Table 2:

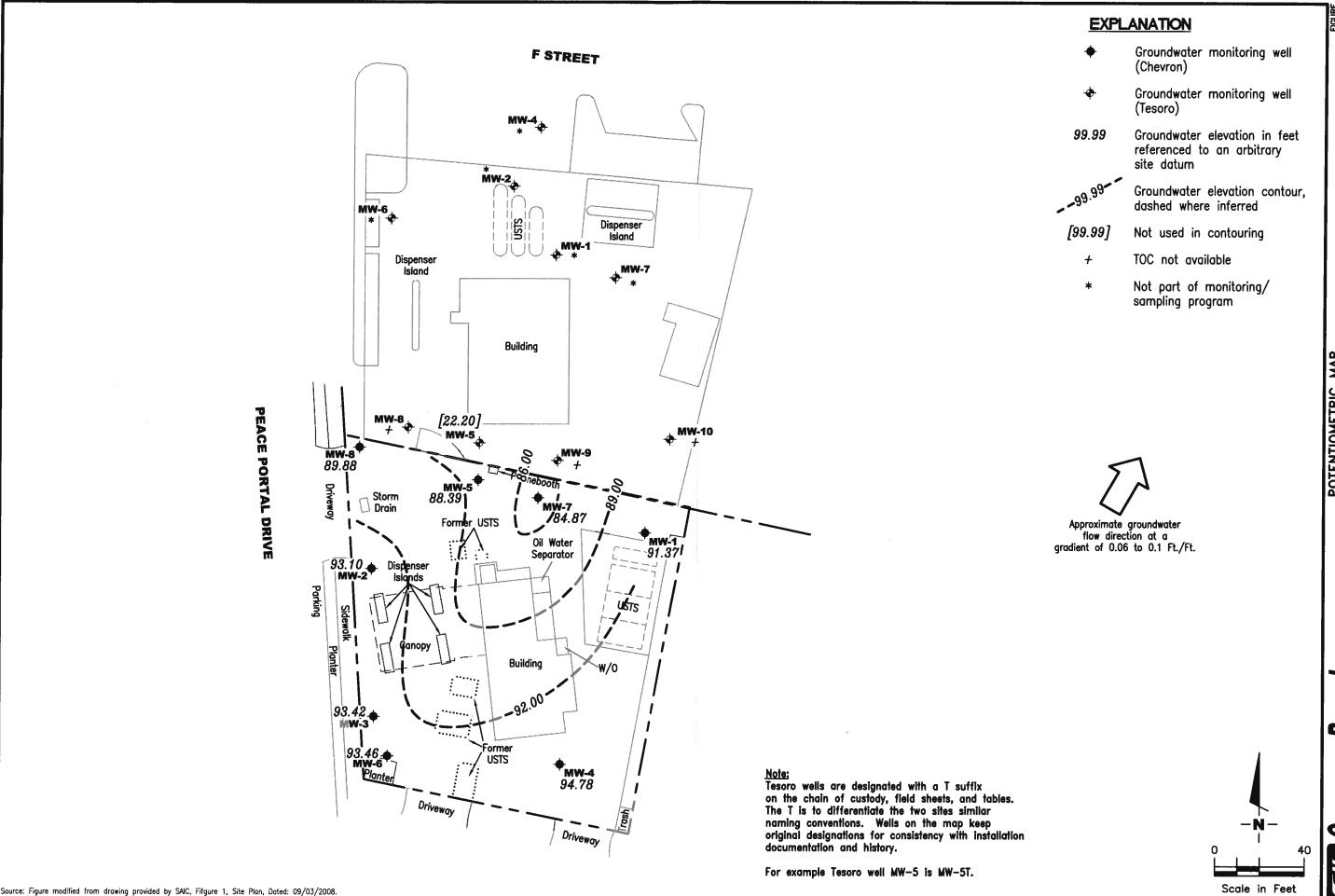

Table 3: Table 4: Table 5: Groundwater Analytical Results - VOCs

Table 6: Groundwater Monitoring Data and Analytical Results - Tesoro Service Station

Standard Operating Procedure - Groundwater Sampling Attachments:

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

MAP

Station #9-1122

Station #9-1122

Station #9-1122

Station #9-1122

All Drive

And 25, 2008

POTENTIOMETRIC MAP
Chevron Service Station #
568 Peace Portal Drive
Blaine, Washington
DATE
September 24 and 25, 20

(925) 551–7555

Suite J (925) 551

erra Court, Suite J CA 94568

ROJECT NUMBI

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1122 568 Peace Portal Drive Blaine, Washington

F						Blain	e, Washingtor	1					
WELL ID/		TOC*	DTW	GWE	TPH-D	ТРН-О	TPH-G	В	T	E	X	MTBE	D. LEAD
DATE		(fi.)	(fi.)	(fl.)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/ L)	(μg/L)	(μg/L)	(µg/L)
MW-1											3700		
05/03/01		100.00	8.34	91.66									
06/19/01		100.00	9.42	90.58	<250 ¹	<750 ¹	192	23.5	6.46	2.49	5.80	<5.00/<5.00 ³	<0.00100 ⁴
08/19/01		100.00	11.37	88.63	<250 ¹	<500 ¹	<50.0	1.06	0.624	< 0.500	<1.00	$<1.00/<5.00^3$	~0.00100
11/28/01		100.00	9.24	90.76	<250 ¹	<500 ¹	190	46.9	8.09	0.924	2.94	$1.96/<5.00^3$	
02/18/02		100.00	7.50	92.50	<250 ¹	<750 ¹	570	20	4.2	4.6	3.4	$<2.5/<2^3$	
05/20/02	NP	100.00	9.30	90.70	<250¹	<750 ¹	1,000	23	6.5	10	4.2	<2.5	
08/16/02	NP	100.00	11.88	88.12	<250 ¹	<250 ¹	100	14	2.1	1.0	<1.5	<2.5	
11/17/02	NP	100.00	11.95	88.05	<250 ¹	<250 ¹	<50	1.0	< 0.50	< 0.50	<1.5	<2.5	
02/07/03	NP	100.00	8.49	91.51	<250 ¹	<750 ¹	95	4.1	<0.50	< 0.50	<1.5	<2.5	
05/21/03	NP	100.00	8.68	91.32	<250 ¹	<250 ¹	600	7.7	1.1	2.1	<1.5	<2.5	
11/15/03	NP	100.00	9.78	90.22	<250 ¹	<250 ¹	<50	1.9	<0.5	<0.5	<1.5	<2.5	
02/07/04	NP	100.00	6.91	93.09	<250 ¹	<250 ¹	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/08/04	NP	100.00	8.72	91.28	<250 ¹	<250 ¹	430	16	1.3	2.4	1.8	$3.0/<2^3$	
08/14/04	NP	100.00	11.18	88.82	<250 ¹	<250 ¹	<50	14	0.8	0.6	<1.5	<2.5	
11/26/04	NP	100.00	6.68	93.32	<250 ¹	<250 ¹	<50	< 0.5	<0.5	<0.5	<1.5	<2.5	
02/24/05	NP	100.00	6.46	93.54	<250 ¹	<250 ¹	<50	17	0.5	<0.5	2.9	<2.5	
06/10/05	NP	100.00	9.26	90.74	<250 ¹	<250 ¹	110	22	0.9	0.5	1.7	<2.5	
08/02/05	NP	100.00	10.53	89.47	<250 ¹	<250 ¹	< 50	1.6	< 0.5	<0.5	<1.5	<2.5	
10/15/05	NP	100.00	11.81	88.19	< 80 ¹	<100 ¹	<48	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
02/11/06	NP	100.00	6.31	93.69	< 82 ¹	<100 ¹	<48	< 0.5	< 0.5	<0.5	<1.5	<2.5	
08/02/07	NP	100.00	8.98	91.02	520 ¹	<98 ¹	<50	4.2	<0.5	<0.5	<1.5		
09/24-25/08 ¹⁰	PER	100.00	8.63	91.37	<80¹	<100¹	120	1	<0.5	<0.5	<0.5	<0.5	
MW-2													
05/03/01		97.01	2.50	03.20									
06/19/01		97.01 97.01	3.72	93.29	791 ^{1,2}		**						
08/19/01		97.01	4.04	92.97		<750¹	40,200	2,110	1,160	777	3,200	$206/<5.00^3$	<0.001004
11/28/01			4.15	92.86	<250 ¹ 513 ^{1,2}	<500 ¹	29,300	3,490	1,010	1,460	4,790	$245/<5.00^3$	
11/28/01		97.01	4.42	92.59		<500 ¹	23,800	3,490	334	1,560	3,720	192/78.7 ^{3,5}	
02/18/02	R	 07.01	2.04	03.05	1 000:		••					/97.9 ³	
02/18/02 05/20/02	ND	97.01	3.94	93.07	1,800	<750 ¹	25,000	2,700	240	1,500	3,400	98/110 ³	
08/16/02	NP ND	97.01	4.28	92.73	1,600	<1,000 ¹	25,000	1,800	110	1,400	2,900	$72/50^3$	
11/17/02	NP NP	97.01	4.19	92.82	2,400 ¹	<250 ¹	25,000	2,000	89	1,200	2,500	140/80 ³	
11/1//02	NP	97.01	5.39	91.62	1,5001	<250 ¹	24,000	2,600	130	1,300	2,700	<100	

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1122 568 Peace Portal Drive

						Blain	e, Washington	1					
WELL ID/		TOC*	DTW	GWE	TPH-D	трн-о	TPH-G	В	T	E	X	MTBE	D. LEAD
DATE		(fL)	(ft)	(fs)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
MW-2 (cont)													
02/07/03	NP	97.01	5.39	91.62	1,700	<7501	27,000	2,700	130	1,500	2,900	<200	
05/21/03	NP	97.01	5.65	91.36	1,3001	<2501	28,000	2,300	93	1,400	2,600	150/90 ¹	-
11/15/03	NP	97.01	3.31	93.70	1,4001	<250°	25,000	2,200	110	1,300	2,700	240/823	
02/07/04	NP	97.01	3.56	93.45	1,500 ^t	<250 ¹	24,000	2,700	130	1,600	2,900	220/663	
05/08/04	NP	97.01	3.96	93.05	1,800	260 ¹	22,000	1,700	69	1,400	2,600	190/61 ³	**
08/14/04	NP	97.01	4.30	92.71	1,700 ¹	3301	21,000	2,000	74	1,400	2,600	<200	
11/26/04	NP	97.01	3.98	93.03	1,1001,6	<4901	21,000	2,400	82	1,200	2,100	<2.5	-
02/24/05	NP	97.01	3.63	93.38	5701	<250 ¹	23,000	1,800	87	1,500	2,600	<100	
06/10/05	NP	97.01	3.52	93.49	1,800 ^t	<250 ¹	21,000	1,500	58	1,200	2,000	<100	-
08/02/05	NP	97.01	4.14	92.87	1,6001,7	3101	23,000	1,700	67	1,300	2,400	130	7.7
10/15/05	NP	97.01	4.26	92.75	1,1001,8	<500 ¹	19,000	2,300	63	1,400	2,000	<50	
02/11/06	NP	97.01	3.72	93.29	1,2001,8	<1001	22,000	2,100	84	1,500	2,300		-
08/02/07	NP	97.01	3.69	93,32	1,500	<480 ¹	15,000	1,400	52	1,400	1,200	<200	-
09/24-25/08 ¹⁰	PER	97.02	3.92	93.10	1,200	<500°	14,000	1,700	57	1,600	615	54	4.5
MW-3													
05/03/01		98.29	4.37	93.92									
06/19/01		98.29	4.58	93.71	<250 ¹	<750¹	2,290	< 0.500	0.550	3.25	6.15	$<5.00/<5.00^3$	< 0.00100
08/19/01		98.29	5.03	93.26	<250 ¹	<500 ¹	383	< 0.500	< 0.500	< 0.500	3.58	<1.00/<5.00 ³	
11/28/01		98.29	4.17	94.12	<250¹	<500 ¹	343	< 0.500	< 0.500	< 0.500	4.31	<1.00/<5.00 ³	
02/18/02		98.29	4.49	93.80	350¹	<750 ¹	510	<0.50	< 0.50	0.69	<1.5	<2.5/<2 ³	
05/20/02	NP	98.29	4.65	93.64	3101	<750 ¹	760	< 0.50	1.0	2.6	<1.5	<2.5	
08/16/02	NP	98.29	5.08	93.21	280¹	<250 ¹	220	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
1 1/17/02	NΡ	98.29	4.59	93.70	<250 ¹	<250 °	310	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
02/07/03	NP	98.29	4.38	93.91	<250 ¹	<750 ¹	350	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
05/21/03	NP	98,29	4.31	93.98	<250 ¹	<250 ¹	400	< 0.5	< 0.5	< 0.5	1.7	<2.5	
11/15/03	NP	98.29	4.53	93.76	260¹	<250 ¹	240	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
02/07/04	NP	98.29	4.11	94.18	250 ¹	<250 ^T	360	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
05/08/04	NP	98.29	4.75	93.54	280¹	<250 ^T	110	< 0.5	< 0.5	<0.5	<1.5	<2.5	
08/14/04	NP	98.29	5.06	93.23	270 i	<250 ¹	100	< 0.5	<0.5	< 0.5	<1.5	<2.5	
11/26/04	NP	98.29	3.76	94.53	<250 ¹	<250 ¹	560	< 0.5	< 0.5	<1.0	<1.5	<2.5	
02/24/05	NP	98.29	4.34	93.95	<250 ¹	<250 ¹	330	< 0.5	< 0.5	<1.0	<3.0	<2.5	
06/10/05	NP	98.29	4.31	93.98	<250 ¹	<250 ^L	250	< 0.5	< 0.5	< 0.5	<1.5	<2.5	

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1122 568 Peace Portal Drive Blaine, Washington

						Dialli	e, Washington						
WELL ID/		TOC*	DTW	GWE	TPH-D	TPH-O	TPH-G	В	T		X	MTBE	D. LEAD
DATE		(ft.)	(ft.)	(fl.)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μ g/L)	(µg/L)	(µg/L)
MW-3 (cont)													
08/02/05	NP	98.29	4.98	93.31	260 ¹	<250 ¹	140	<0.5	<0.5	<0.5	<1.5	<2.5	
10/15/05	NP	98.29	4.06	94.23	2001,9	200 ¹	250	<0.5	<0.5	<0.5	<1.5	<2.5	
02/11/06	NP	98.29	4.22	94.07	110 ^{1,8}	<100	390	<0.5	<0.5	<0.5	<2.0		•
08/02/07	NP	98.29	4.73	93.56	7401	<971	200	<0.5	<2.0	<0.5	<1.5	<2,5	-
09/24-25/0810	PER	98.31	4.89	93.42	991	<991	350	<0.5	<0.5	<0.5	<0.5	-0.5	
	-		4.07	70.44	**		330	-0.3	-0.5	40.5	<0.5	<0.5	-
MW-4													
05/03/01		99.81	4.65	95.16									
06/19/01		99.81	5.14	94.67	<250 ¹	<750 ¹	<50.0	< 0.500	< 0.500	< 0.500	<1.00	<5.00/<5.00 ³	<0.00100
08/19/01		99.81	6.01	93.80	4751.2	<500 ¹	<50.0	<0.500	< 0.500	< 0.500	<1.00	$< 1.00 / < 5.00^3$	
1/28/01		99.81	4.24	95.57	<250 ¹	<500 ¹	<50.0	< 0.500	< 0.500	< 0.500	<1.00	<1.00/<5.00	
2/18/02		99.81	3.98	95.83	<250 ¹	<750 ¹	<50	<0.50	<0.50	< 0.50	<1.50	$<2.5/<2^3$	
5/20/02		99.81	5.05	94.76									
08/16/02		99.81	6.01	93.80		-	-			**	**		776.44
11/17/02		99.81	5.22	94.59		**				_	-	-	-
02/07/03		99.81	4.86	94.95				**	**	-	_	_	_
)5/21/03		99.81	4.78	95.03	4-	-		***					
1/15/03		99.81	5.02	94.79		**		-	_		-	-	-
02/07/04		99.81	4.62	95.19	-		-			_		-	-
05/08/04		99.81	5.19	94.62		***			-	-	-	-	-
8/14/04		99.81	5.91	93.90	-		-			-	_	-	-
1/26/04		99.81	3.84	95.97	-		-	-	_	-	_	-	-
2/24/05		99.81	4.85	94.96	(44)	-	**	-	**			-	-
6/10/05		99.81	4.81	95.00				**	-				**
8/02/05		99.81	5.79	94.02	-	-	_	_	_	-	-	-	**
0/15/05		99.81	4.52	95.29	-	**		-	-	100	-	-	-
02/11/06		99.81	4.69	95.12				_		-		-	-
08/02/07		99.81	5.22	94.59	430 ^t	<97 ¹	<50	<0.5	<0.5	<0.5	<1.5	-	••
09/24-25/08 ¹⁰	PER	100.15	5.37	94.78	<79 ¹	<99 ¹	<50	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5	

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1122 568 Peace Portal Drive Blaine, Washington

				59.7AB-		Blaine	, Washington	1					
WELL ID/		TOC*	DTW	GWE	TPH-D	TPH-O	TPH-G	В	T	E	X	MTBE	D. LEAD
DATE		(fL)	(fi.)	(ft.)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
MW-5 09/24-25/08 ¹⁰	PER	97.33	8.94	88.39	1,1001	<99 ¹	9,600	380	24	320	940	13	4.6
MW-6 09/24-25/08 ¹⁰	PER	99.01	5.55	93.46	700¹	120 ¹	6,800	13	2	170	430	0.6	-
MW-7 09/24-25/08 ¹⁰	PER	98.21	13.34	84.87	<79 ¹	<99 ¹	120	160	3	7	3	24	
MW-8 09/24-25/08 ¹⁰	PER	95.62	5.74	89.88	<79 ¹	<99 ¹	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-
TRIP BLANK													
06/19/01			-	-			<50.0	< 0.500	< 0.500	< 0.500	<1.00	< 5.00	
08/19/01		**	-				<50.0	< 0.500	< 0.500	< 0.500	<1.00	<1.00	
11/28/01				-			<50.0	< 0.500	< 0.500	< 0.500	<1.00	<1.00	
02/18/02			**				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
05/20/02		77		**			<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
QA													
08/16/02		**		-		**	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
11/17/02		-	••	-	••		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
02/07/03		-					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
05/21/03		-		**			<50	<0.5	< 0.5	< 0.5	<1.5	<2.5	
11/15/03		-	en.	-		-	<50	< 0.5	< 0.5	<0.5	<1.5	<2.5	
02/07/04		-		**		-	<50	< 0.5	<0.5	< 0.5	<1.5	<2.5	
05/08/04		-		-	-		<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
08/14/04			-	••	-		<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
11/26/04		-	-			-	<50	< 0.5	< 0.5	<0.5	<1.5	<2.5	
02/24/05		-	-	-		**	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
06/10/05		-	-	**			<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
08/02/05		***	**	-	**	••	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-1122

568 Peace Portal Drive Blaine, Washington

WELL ID/	TOC*	///// 	GWE	TPH-D	ТРН-О	TPH-G	В	T	E	X	MTBE	D. LEAD
DATE	(ft.)	(fl.)	(ft)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
QA (cont)												
10/15/05	-	-	-		***	<48	<0.5	<0.5	<0.5	<1.5	<2.5	
02/11/06		-			-	<48	<0.5	<0.5	<0.5	<1.5	<2.5	**
08/02/07						<50	<0.5	< 0.5	<0.5	<1.5	_	
09/24-25/08 ¹⁰	=	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5	_

	TPH-D TPH-O		TPH-G	В	T	E	Х	MTBE	D. LEAD
Standard Laboratory Reporting Limits:	250	250	50	0.5	0.5	0.5	1.5	2.5	0.09100
MTCA Method A Cleanup Levels:	500	500	800/1,000	5	1,000	700	1,000	20	
Current Method:	NWTPH-D	+ Extended	NWTPH-G and EPA 8260					EPA 6020	

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1122 568 Peace Portal Drive Blaine, Washington

EXPLANATIONS:

B = Benzene

Groundwater monitoring data and laboratory analytical results prior to September 25, 2008, was provided by SAIC.

TOC = Top of Casing	T = Toluene	R = Re-analysis
(ft.) = Feet	E = Ethylbenzene	NP = No purge
DTW = Depth to Water	X = Xylenes	QA = Quality Assurance/Trip Blank
GWE = Groundwater Elevation	MTBE = Methyl tertiary butyl ether	MTCA = Model Toxics Control Act Cleanup Regulations
TPH-D = Total Petroleum Hydrocarbons as Diesel	D. LEAD = Dissolved Lead	[WAC 173-340-720(2)(a)(I), as amended 02/01].
TPH-O = Total Petroleum Hydrocarbons as Oil	$(\mu g/L)$ = Micrograms per liters	PER = Peristaltic Pump
TPH-G = Total Petroleum Hydrocarbons as Gasoline	(mg/L) = milligrams per liter	•

-- = Not Measured/Not Analyzed

* TOC elevations provided by SAIC on October 24, 2008. TOC elevations have been surveyed in feet relative to an arbitrary datum.

- ¹ TPH-D and TPH-O with silica gel cleanup.
- Laboratory report indicates the results in the diesel organics range are primarily due to overlap from a gasoline range product.
- MTBE by EPA Method 8260.
- Laboratory report indicates the sample was laboratory filtered and not in the field as required by the methodology.
- Laboratory report indicates estimated value due to result exceeding the calibration range of the analysis.
- Laboratory report indicates the observed sample pattern is not typical of diesel/#2 fuel oil.
- Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes earlier and later in the DRO range.
- Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range earlier than #2 fuel.
- Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes later in the DRO range.
- 10 BTEX and MTBE by EPA Method 8260.

Table 2 Groundwater Analytical Results Chevron Service Station #9-1122

	>C21-C34 Aromatic (48/L)	o51>	47>
	5.C.16-C.2.l Aromatic (小変れ)	v110	\$\$
	>C12-C16 Aromatic (<i>1</i> /84 <i>1</i>)	980	310
	>C10-013 Aromatic (Ll <u>g</u> 4)	1,500	910
	>::4:4:4:4:4:4:4:4:5:4:4:4:4:4:4:4:4:4:4	8.6>	5
a .	>C16-C21 Aliphatic > <i>C18(L)</i>	8.6>	8°6>
568 Peace Portal Drive Blaine, Washington	>C12-C16 Aliphatie >C12-C16 Aliphatie	8.6>	30
568 Peac Blaine,	>C10-013< (D.g.t.)	2	280
	C-8-C-10 Arematic Hydrocarbons (µg/L)	2,360	2,190
	C-8-C-10 Aliphatic Hydrocarbons (µg/L)	1,060	1,220
	C-6-C-8 Aliphatic Hydrocarbons (ng/L)	3,810	1,570
	C-S-C-6 Aliphatic Hydrocarbons (µg/L)	1,310	223
	WELL ID / DATE	MW-2 09/24-25/08	MW-5 09/24-25/08

ANALYTICAL METHODS:

EPM analyzed by ECY-94-602

 $(\mu g/L) = Micrograms per liter$

EXPLANATIONS

Groundwater Analytical Results - PCBs

Chevron Service Station #9-1122 568 Peace Portal Drive Blaine. Washington

WELL ID / DATE	(ng/L)	(HB/L)	(µ8/E)	$(\mu g/L)$	(µg/L)	(µg/L)	(Mg/L)
MW-2 09/24-25/08	860"0>	<0.00	070>	860°0>	860'0>	860'0>	-0.098
MW-5 09/24-25/08	<0.098	×0.098	<0.20	<0.098	*************************************	860.0>	86°°0>

ANALYSIS METHODS:

EPA Method SW-846 8082

PCB - Polychlorinated biphenyls $(\mu g/L) = Micrograms per liters$

EXPLANATIONS

Groundwater Analytical Results PAHs Chevron Service Station #9-1122

568 Peace Portal Drive

Blaine, Washington

DIRENZ (8,h) ANTHRACENE	8600.0>	<0.10
INDENO (1,2,3,-cd) PYREUE	8600'0>	<0.10
BENZO (*) LAKENE	<0.0098	<0.10
ELTORANTHENE FLUORANTHENE BENZO (k)	860000>	<0.10
(hg/L) FLUORANTHENE BENZO (b)	<0.0000	<0.10
(#8\T) CHKARENE	860000>	<0.10
(n8/f.) Benzo (*) valhbyceae	40°000	<0.10
WELL ID/DATE	MW-2 09/24-25/08	MW-5 09/24-25/08

EXPLANATIONS

 $(\mu g/L)$ = Micrograms per liters PAH Polynuclear Aromatic Hydrocarbons

EPA Method SW-846 8270C

ANALYSIS METHODS:

As of 09/25/08 9-1122.xls/#386756

Groundwater Analytical Results VOCs Chevron Service Station #9-1122

Blaine, Washington

568 Peace Portal Drive

Naphthalene (Agu)	100	130
и-Висудреяzепе (ЦУД)	7	-
þ-Jsobrépylteluene p-Jsoprépylteluene	**	•
sec-Butylbenzene (ug/L.)	6	•
ənəznədlyktəmirT-Þ.C.T ("I/gu)	130	440
ensznedłykienie ("I.) ("I.)	8	140
n-Propylbenzene (µg/L.)	190	3
Творгорудьей тем. Творгоруды (р. 1974)	74	Ħ
Bromodichloromethane (LYM)	A	∇
Trichloroethene (L's4)	4	⊽
ensálsoroldoritT-L,l,l (L'g4)	A	<0.8
Chlorotorm (µg/L)	Q	~0.8
энаизеотойогой-2,Г-гіз (Л'gл)	4	*************************************
ens-t,2-Dichleroethene (1/8/L)	4	×0.8
L.I.Dichlaroethene (µg/L.)	∇	*0.8
(h8\T)	z	2
Zotal Xylenes (J/gµ)	615	940
Ethyldenzene (µg/L)	1,600	320
ənəlbT (LPg4)	25	a
Benzene (LE/L)	1,700	380
MEIT IBADVLE	MW-2 09/24-25/08	MW-5 09/24-25/08 ¹

EXPLANATIONS

 $(\mu g/L) = Micrograms per liters$

VOC = Volatile Organic Compounds

ANALYTICAL METHODS:

Volatile Organic Compounds analyzed by 8260

♦ All other VOCs by EPA Method 8260B were less than the reporting limit unless noted.

Laboratory report indicates Acetone at 21 ug/L, 2-Butanone at 5 ug/L, 4-Methyl-2-pentanone at 4 ug/L and 2-Hexanone at 6 ug/L.

Groundwater Monitoring Data and Analytical Results
Tesoro Service Station
530 Peace Portal Drive
Rlaine Washington Table 6

	(tr)	(a)				4		<u> </u>	~	MTRE	MTRE DIEAD
PER PER	1		(ng/L)	(ug/L)	(ng/L)	(ug/L)	(ag/L)	(ug/L)	(µg/L) (µg/L) (mg/L)	(ng/L)	(mg/L)
	3.62	22.20	28	<1001	₹	\$₽	40.5	465	₹	\$	1
	5.96	Ė	NOT SAMPLI	NOT SAMPLED DUE TO INSUFFICIENT WATER	SUFFICIEN	IT WATER	1	1		1	1
09/24-25/08 PER	4.54	I	NOT SAMPLA	NOT SAMPLED DUE TO INSUFFICIENT WATER	SUFFICIEN	IT WATER	t	1.1	1	1.	1.
MW-10T 09/24-25/08 ² PER –	4.35	1	~83 ₁	<1001	0 \$ >	<0.5	<0.5	<0.5	<0.5	<0.5	1.

Table 6

Groundwater Monitoring Data and Analytical Results Tesoro Service Station #9-1122 530 Peace Portal Drive Blaine, Washington

EXPLANATIONS:

TOC = Top of Casing	T = Toluene	= Not Measured/Not Analyzed
(ft.) = Feet	E = Ethylbenzene	R = Re-analysis
DTW = Depth to Water	X = Xylenes	NP = No purge
GWE = Groundwater Elevation	MTBE = Methyl tertiary butyl ether	QA = Quality Assurance/Trip Blank
TPH-D = Total Petroleum Hydrocarbons as Diesel	D. LEAD = Dissolved Lead	MTCA = Model Toxics Control Act
TPH-O = Total Petroleum Hydrocarbons as Oil	$(\mu g/L) = Micrograms per liters$	[WAC 173-340-720(2)(a)
TPH-G = Total Petroleum Hydrocarbons as Gasoline	(mg/L) = milligrams per liter	PER = Peristaltic pump
B = Benzene		

2)(a)(I), as amended 02/01]. ol Act Cleanup Regulations Blank

TOC elevations have been surveyed in feet relative to an arbitrary datum.

TPH-D and TPH-O with silica gel cleanup.

BTEX and MTBE by Method 8260.

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize. Purge water is treated by filtering the water through granular activated carbon and is subsequently discharged to the ground surface at the site.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used for all samples. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

Standard Operating Procedure, Low-Flow Purging and Sampling

This procedure is designed to assist the user in taking representative groundwater samples from groundwater monitoring wells. Samples will be collected using low-flow (minimal drawdown) purging and sampling methods as discussed in <u>U.S. EPA</u>, <u>Ground Water Issue</u>, <u>Publication Number EPA/540/S-95/504</u>, <u>April 1996</u> by Puls, R.W. and M.J. Barcelona - "Low-Flow (Minimal Drawdown) Ground-water Sampling Procedures."

The field sampler's objective is to purge and sample the well so that the water that is discharged from the pump, and subsequently collected, is representative of the formation water from the aquifer's identified zone of interest.

The wells to be sampled are equipped with QED Well WizardTM bladder (squeeze-type) pumps or Peristaltic Pumps Each bladder pump or the suction inlet tubing of the peristaltic pump is positioned with its inlet located within the screened interval of the well. The down well equipment includes a bladder pump or Teflon-lined PE (polyethylene) tubing.

Initial Pump Flow Test Procedures

If possible, the optimum flow rate for each well will be established during well development or redevelopment, or in advance of the actual sampling event. The monitoring well must be gauged for Static Water Level (SWL) prior to the installation of the pump and before pumping of any water from the well. The measurement will be documented on a Low Flow Ground Water Sample Collection Record, or field data sheet.

After pump installation, and confirmation that the SWL has returned to its original level (as determined prior to pump installation), the bladder pump or peristaltic pump should be started at a discharge rate between 100 ml to 300 ml per minute without any in-line flow cell connected. The water level in the well casing must be monitored continuously for any change from the original measurement. If significant drawdown is observed, the pump's flow rate should be incrementally reduced until the SWL drawdown ceases and stabilizes. Total drawdown from the initial (static) water level should not exceed 25% of the distance between pump inlet location and the top of the well screen. (For example, if a well has a 10-foot screen zone and the pump inlet is located mid-screen; the maximum drawdown should be 1.25 feet.) In any case, the water level in the well should not be lowered below the top of the screen/intake zone of the well.

Once the specific well's optimum discharge rate, without an in-line flow cell connected, has been determined and documented, the in-line flow cell system to be used is connected to the well discharge and the control settings required to achieve the well's optimum discharge rate are determined with the in-line flow cell connected. (Due to the system's back-pressure, the discharge rate will be decreased by 10-20%). All control settings are to be documented on the gauging and sampling sheet as specific to that particular well's ID and will be utilized for its subsequent purging and sampling events.

Purge and Sampling Events

Prior to the initiation of purging a well, the SWL will be measured and documented. The pump will be started utilizing its documented control settings and its discharge rate will be confirmed by volumetric discharge measurement with the in-line flow cell connected. If necessary, any minor modifications to the control settings to achieve the well's optimum discharge rate will be documented on the gauging sheet. When the optimum pump flow rate has been established, the SWL draw down has stabilized within the required range and at least one pump system volume (bladder volume + discharge tubing volume) has been purged, begin taking field measurements for pH, temperature (T), conductivity (Ec), oxygen reduction potential (ORP) and dissolved oxygen (DO) using a "QED" Model MP-20 in-line flow cell, or other multi-parameter meter. All water chemistry field measurements will be documented on the field data sheet. Measurements should be taken every three to five minutes until stabilization has been achieved. Stabilization is achieved after all parameters have stabilized for three consecutive readings. In lieu of measuring all five parameters, a minimum subset would include pH, conductivity and dissolved oxygen. Three consecutive measurements indicating stability should be within:

Temperature $\pm 10\%$ pH ± 0.1 units Conductance ± 03

When water quality parameters have stabilized, and there has been no change in the stabilized SWL (ie. No continuous draw down), sample collection may begin.

Equipment List

The following equipment is needed to conduct low flow purging and sampling:

- ▶ Bladder pump installed within the well's screened interval
- > Pump controller and air source set to operate at the specific well's documented optimum discharge rate
- > In-line flow cell and meter(s) with connection fittings and tubing to measure water quality
- Water level probe or installed dedicated water level measurement system
- > Sample containers appropriate for the analytical requirements
- ➤ Low Flow Ground Water Sample Collection Record, or field data sheets
- > 300-500 milliliter graduated cylinder or measuring cup
- > 5 gallon bucket(s) for collecting purge water
- > Wristwatch with second hand or stopwatch
- > Sufficient cleaning and decontamination supplies if portable water level probe is utilized
- Peristaltic pump & tubing, in place of bladder pump, if applicable
- Multi-parameter meter, in place of in-line flow cell, if applicable

Procedure QED Bladder Pumps

- 1. Calibrate all field instruments at the start of each day's deployment per the instrument manufacturer's instructions. Record calibration data on the "Field Instruments Calibration Documentation Form."
- Drive to the first well scheduled to be sampled (typically the least contaminated). Make notes in the field logbook, describing the well condition and activity in the vicinity of the well.
 Decontaminate the portable water gauging probe by washing with phosphate-free detergent, rinsing with potable water.
- 3. Measure the depth to water from the surveyed reference mark on the wellhead and record the measurement on the gauging and sampling sheet. Lock the water level meter in place so that the level can be monitored during purging and sampling. When placing the probe in the well, take precautions to not disturb or agitate the water.
- 4. Connect the compressed air source's airline to the pump controller's "AIR IN" connection (If utilizing a gas-engine operated compressor, locate the compressor at least 25 feet, down wind from the wellhead).
- 5. Connect the pump controller "AIR OUT" air-line to the bladder pump's air supply fitting at the wellhead.
- 6. Connect the pump discharge line to the in-line flow cell's "IN" fitting.
- Connect the flow cell's "OUT" line and secure to drain the purge water into the purge water collection container.
- 8. Start the air supply to the pump. Set the pump controller settings to the documented settings for the specific well. Confirm the flow rate is equal to the well's established optimum flow rate. Modify as necessary (documenting any required modifications).
- 9. Monitor the water level and confirm that the SWL draw down has stabilized within the well's allowable limits.
- 10. After a single pump-system's volume (bladder volume + discharge tubing volume) has been adequately purged, read and record water quality field measurements every three to five minutes until all parameters have stabilized within their allowable ranges for at least three consecutive measurements. When stabilization has been achieved, sample collection may begin.
- 11. Disconnect the flow cell, and it's tubing, from the pump discharge line before collecting samples. Decrease the pump rate to 100 milliliters per minute or less by lowering the controller's air pressure setting prior to collecting samples for volatiles. Utilize the QED Model 400 Controller's 'MANUAL SAMPLE' button to ensure minimized sample exposure to the ambient air. Refer to

- the task instructions for the correct order and procedures for filling sample containers. Place the samples in a cooler with enough ice to keep them at 4 degrees Centigrade.
- 12. Once samples for volatiles have been collected, re-establish pump flow rate to the original purge flow rate by inputting the documented controller settings for the well without the in-line flow cell connected and collect remaining samples.
- 13. When all sample containers have been filled, make a final measurement of the well's SWL and record the measurement on the gauging and sampling sheet. If the well has a "QED" dedicated bottom sounder, measure the well's total depth and record the measurement, as well.
- 14. Measure and record total purge volume collected. Consolidate generated purge water.
- 15. Remove and decontaminate the portable water level probe with phosphate-free detergent, rinsing with potable water.
- 16. Disconnect the controller air supply to the pump.
- 17. Secure the pump's discharge line/discharge adapter in the wellhead.
- 18. Secure the wellhead cover and secure with its lock. Move equipment to next well to be sampled.
- 19. At the end of each day, post calibrate all field instruments and record the measurements on the "Field Calibration Documentation Form".
- Clean and decontaminate the in-line flow cell with phosphate-free detergent, rinsing with potable water.

Procedure Peristaltic Pump

- 1. Record all depth to water readings on field data sheets
- 2. Calibrate all field instruments according to manufacturer's directions.
- 3. Setup pump and install silicone tubing in the roller head.
- 4. Place suction tubing at desired intake level in well, (mid screen) and attach to pump silicone tubing.
- 5. Attach tubing at discharge side of pump head and connect to flow cell inlet. Place discharge Tubing from flow cell into collection container.
- 6. Start pump and adjust flow rate to achieve flow without depressing water level more than necessary (approx. 0.30').
- 7. Record parameter readings after parameters have stabilized (3 consecutive readings that fall within the acceptance criteria).
- 8. Stop pump and disconnect flow cell prior to collecting samples. Restart pump and set flow rate to minimum (approximately 100ml/min).
- 9. Change all tubing between wells and repeat procedure.

Client/Facility#: Site Address: City:	Chevron #9-112 568 Peace Porta Blaine, WA		Job Number: Event Date: Sampler:	386756 9-24-08-9-3 ML	5- P (inclusive)
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump	w/ 80% Recharge [(Hei	Check if water co	20) + DTW]: <u>[O, O4</u>	2 1"= 0.04 2"= 0.17 6 5"= 1.02 6"= 1.50 D ft. Estimated Purge Volume: Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thicknet Visual Confirmation/D Skimmer / Absorbant Amt Removed from Sl Amt Removed from W	ss:ft escription: Sock (circle one) kimmer:gal
	te: <u>8680 /9-7</u> 9 e: <u>150 m.l g</u> pm	Water Col. Sediment Time:	Description: Description: Diume: Temperature	Water Removed: Product Transferred to Odor: OI N Aone gal. DTW @ Sampling: D.O. O	
SAMPLE ID MW-	💪 x voa vial Y	LABORATORY RIG. PRESERV. TYP ES HCL ES HCL	LANCASTER	ANALYS NWTPH-Gx/BTEX+MTBE(82 NWTPH-Dx w/sgc	
Add/Replaced Lo		Add/Replaced Plug:		Add/Replaced Bolt:	

Client/Facility#:	Chevron #9	-1122		Job Number:	386756	
Site Address:	568 Peace F	Portal Dri	ive	Event Date:	9-24-08 -9-35-08 (inclusive)	
City:	Blaine, WA			Sampler:	ML	
Well ID	MW- 2			Date Monitored:	9-24-08	_
Well Diameter	2 ir	<u>1.</u>	Volu	ime 3/4"= 0.	.02 1"= 0.04 2"= 0.17 3"= 0.38	
Total Depth	15.36 A	<u>t.</u>	Fact	tor (VF) 4"= 0.		
Depth to Water	_3.92 ft		Check if water colu	mn is less then 0.5	50 ft.	
	11.44	xVF	= <u>-</u> _	x3 case volume :	= Estimated Purge Volume:gal.	
Depth to Water	w/ 80% Recharge	e [(Height of \				
Duna Francis		_			Time Started: (2400 hrs) Time Completed: (2400 hrs)	
Purge Equipment:		S	ampling Equipment	t:	Time Completed: (2400 hrs) Depth to Product: ft	
Disposable Bailer			isposable Bailer		Depth to Water: ft	
Stainless Steel Bailer	Г <u> </u>		ressure Bailer		Hydrocarbon Thickness:ft	
Stack Pump Suction Pump		_	iscrete Bailer		Visual Confirmation/Description:	
Grundfos			eristaltic Pump		Skimmer / Absorbant Sock (circle one)	
Peristaltic Pump		_	ED Bladder Pump		Amt Removed from Skimmer:gai	
QED Bladder Pump		V	ther:		Arnt Removed from Well:gal	
Other:					Water Removed: Product Transferred to:	
					TOUGH Hallaretres (c.	
Start Time (purge Sample Time/Dat Approx. Flow Rat Did well de-water	te: 1/35 19 te: 150 ml	pm.	Weather Colo Sediment D Volu Conductivity	r: <u>/oudg</u> lescription: ume:	Odor: Ø/ N //ght gal. DTW @ Sampling: 5,92	
(2400 hr.)	(gat)	pН	(µmhos/cm - µS)	Temperature	D.O. ORP DTW (mg/L) (mV)	<i>'</i>
//15	1.5	6.82	Coole	16.8	\$.06	
1114	7	Z . 85	100	130		
1/71	2.5	87	6/2	$\frac{77.0}{13.1}$		
				1721	<u> </u>	
		1	ABORATORY II	NEORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE		ANALYSES	
MW-Z	x voa vial	YES	HCL	LANCASTER	NWTPH-Gx/BTEX+MTBE(8260)/EDS/EDS/NAPHThelse	IE/8
	Z x 1 liter ambers	YES	HCL		NWTPH-Dx w/sgc	, (-
	3 X Von Vial	**	~~		FUIL 134 (8260)	
	3 X VOA VIAL		White-		VPH (ECYTT-662 WA VPH)	
	1 x Soomi Poly		HNO. NaZSZO.		Total (800) c PAHS (800)	
	Z X /L AHACK	7	77523203	 -, -	PCES (8081)	
COMMENTS:	LX IL Amber	10	HCI		EPH (ECY97-602 WA EPH)	
	Pump Sut	Jegh	- 1 See			
	,					
Add/Replaced Le	ock:	Add/f	Replaced Plug: _		Add/Replaced Bolt:	

Client/Facility#:	Chevron #9-11:	22	Job Number:	386756	
Site Address:	568 Peace Port	tal Drive	Event Date:	9-24-88-9-36-08	(inclusive)
City:	Blaine, WA		Sampler:	mL	
Well ID	Mw- 3		Date Monitored:	9-24-08	
Well Diameter	2 in.	Volum	ne 3/4"= 0.0		T
Total Depth	15.25 ft.	Facto		36 5"= 1.02 6"= 1.50 12"= 5.80	
Depth to Water	4.89 ft.	Check if water column	n is less then 0.50	O ft.	1
	10.36 xV			Estimated Purge Volume:	gal.
Depth to Water	w/ 80% Recharge [(H	eight of Water Column x 0.20)	+ DTW]; <u>Съ-Р</u> (((0.400.)
Purge Equipment:		Sampling Equipment		Time Started: Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer		Sampling Equipment: Disposable Bailer		Depth to Product:	
Stainless Steel Baile		Pressure Bailer		Depth to Water:	ft
Stack Pump		Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Description:	
Suction Pump		Peristaltic Pump	$\overline{}$		
Grundfos		QED Bladder Pump		Skimmer / Absorbant Sock (circle	e one)
Peristaltic Pump		Other:		Amt Removed from Skimmer: Amt Removed from Well:	gal
QED Bladder Pump				Water Removed:	yar
Other:				Product Transferred to:	
Start Time (purge	1015	Weather Cor	ditions: R	Pain	
	te: 1845 / 4-	 -	. P. —		
Sample Time/Da	NG. 1777 3 / 97 = .		(152 M F)	Odory V / N	
			(ladg	Odor:O/ / N	 -
Approx. Flow Ra	te: 150 ml gpr	m. Sediment De	scription:	1192	
Approx. Flow Ra Did well de-wate	te: 150 ml gpr		scription:	<i>- j</i> 1	E3 6.59
Approx. Flow Ra Did well de-wate Time	r? 150 ml ppr r? 16 yes	m. Sediment De , Time: Volur	scription:	gal. DTW @ Sampling:	E3 6.59
Approx. Flow Ra Did well de-wate Time (2400 hr.)	r? 150 ml ppr	m. Sediment De	scription:	gal. DTW @ Sampling:	PTW
Approx. Flow Ra Did well de-wate Time (2400 hr.)	r? 150 ml ppr r? 16 yes	m. Sediment De , Time: Volur	scription:	gal. DTW @ Sampling:	DTW 5.93
Approx. Flow Ra Did well de-wate Time (2400 hr.)	r? 150 ml ppr r? 16 yes	m. Sediment De , Time: Volur	scription:	gal. DTW @ Sampling:	5.93 6.41
Approx. Flow Ra Did well de-wate Time (2400 hr.)	r? 150 ml ppr r? 16 yes	m. Sediment De , Time: Volur	scription:	gal. DTW @ Sampling:	DTW 5.93
Approx. Flow Ra Did well de-wate Time (2400 hr.)	r? 150 ml ppr r? 16 yes	m. Sediment De , Time: Volur	scription:	gal. DTW @ Sampling:	5.93 6.41
Approx. Flow Ra Did well de-wate Time (2400 hr.) [025 1027 1031	Volume m. Sediment De Time:	Temperature (C) / F) / 7.0 / 7.7 / 7.2	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	5.93 6.41	
Approx. Flow Ra Did well de-wate Time (2400 hr.) [0 2 5 10 2 7 10 3 1	Volume Conductivity (µmhos/cm - SS) scription:	gal. DTW @ Sampling:	5.93 6.41		
Approx. Flow Ra Did well de-wate Time (2400 hr.) [025 1027 1031	Volume m. Sediment De Time:	scription:	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES NWTPH-Gx/BTEX+MTBE(8260)	5.93 6.41	
Approx. Flow Ra Did well de-wate Time (2400 hr.) [0 2 5 10 2 7 10 3 1	Volume Conductivity (µmhos/cm - SS) 73	scription:	gal. DTW @ Sampling:	5.93 6.41	
Approx. Flow Ra Did well de-wate Time (2400 hr.) [0 2 5 10 2 7 10 3 1	Volume Conductivity (µmhos/cm - SS) 73	scription:	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES NWTPH-Gx/BTEX+MTBE(8260)	5.93 6.41	
Approx. Flow Ra Did well de-wate Time (2400 hr.) [0 2 5 10 2 7 10 3 1	Volume Conductivity (µmhos/cm - SS) 73	scription:	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES NWTPH-Gx/BTEX+MTBE(8260)	5.93 6.41	
Approx. Flow Ra Did well de-wate Time (2400 hr.) [0 2 5 10 2 7 10 3 1	Volume Conductivity (µmhos/cm - SS) 73	scription:	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES NWTPH-Gx/BTEX+MTBE(8260)	5.93 6.41	
Approx. Flow Ra Did well de-wate Time (2400 hr.) [O 2 5 [O 2 7 [O 3] SAMPLE ID MW- 3	Volume Vo	Conductivity (µmhos/cm - SS) 73 S=1/2 70 S=1/2 ABORATORY IN EFRIG. PRESERV. TYPE YES HCL YES HCL	scription: ne: Temperature (C / F) / 7.2 / 7.2 FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES NWTPH-Gx/BTEX+MTBE(8260)	5.93 6.41
Approx. Flow Ra Did well de-wate Time (2400 hr.) [0 2 5 10 2 7 10 3 1	Volume Vo	Conductivity (µmhos/cm - SS) 73	scription: ne: Temperature (C / F) / 7.2 / 7.2 FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES NWTPH-Gx/BTEX+MTBE(8260)	5.93 6.41
Approx. Flow Ra Did well de-wate Time (2400 hr.) [O 2 5 [O 2 7 [O 3] SAMPLE ID MW- 3	Volume Vo	Conductivity (µmhos/cm - SS) 73 S=1/2 70 S=1/2 ABORATORY IN EFRIG. PRESERV. TYPE YES HCL YES HCL	scription: ne: Temperature (C / F) / 7.2 / 7.2 FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES NWTPH-Gx/BTEX+MTBE(8260)	5.93 6.41

Client/Facility#:	Chevron #9-	1122		Job Number:	386756		
Site Address:	568 Peace P	ortal Dr	ive	Event Date:	9-24-88	36-26-6-	· (inclusive)
City:	Blaine, WA			Sampler:	ML	- 45 - 46	_ (
					7.0		<u> </u>
Well ID	MW- 4			Date Monitored:	9-24-08		· · · · ·
Well Diameter	2 in	_ .	Volum				T
Total Depth	15.37 ft.	_	4	ne 3/4"= 0. r (VF) 4"= 0.		2"= 0.17	1
Depth to Water	5.37 ft.		 Check if water colum	in is less then 0.5	00 ft		1
	18.00	xVF	<u> </u>			olume:	gal.
Depth to Water v	w/ 80% Recharge	: [(Height of	Water Column x 0.20)			didine,	yaı.
	ū				Time Starte		(2400 hrs)
Purge Equipment:		5	sampling Equipment:		Time Comp	leted:	(2400 hrs)
Disposable Bailer		C	isposable Bailer		Depth to W	oduct:	π
Stainless Steel Bailer	<u> </u>	P	ressure Bailer		Hydrocarbo	n Thickness:	<u>"</u>
Stack Pump			iscrete Bailer			rmation/Description:	
Suction Pump		P	eristaltic Pump	$\underline{\hspace{1cm}}$			
Grundfos		C	ED Bladder Pump		Skimmer / A	bsorbant Sock (circl	e one)
Peristaltic Pump	<u>_×</u>	C	ther:		Amt Remov	ed from Skimmer ed from Well;	gal
QED Bladder Pump					Water Remo		ga
Other:						nsferred to:	
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water	te: <u>0900 9</u> e: <u>50 ml</u>	gpm.	Weather Color: Water Color: Sediment De	CCEV escription:	Odor: Y / (N) gal. DTW @ Sa	empling:	6.01
Time (2400 hr.)	Volume (gfm)	pН	Conductivity (µmhos/cm (µS)	Temperature	D.O. (mg/L)	ORP (mV)	D7 W
0840	1.5	7.07	343	15.5			5,76
0843	7	7.04	341	15.6			5.90
0846	7.5	7.06	341	15.7			6.01
							G , - 1
				-			
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATORY IN PRESERV. TYPE	FORMATION LABORATORY	· -		
MW- E	x voa vial	YES	HCL	LANCASTER	NWTPH-GX/BTEX4	ANALYSES	
	2 x 1 liter ambers	YES	HCL	LANCASTER	NWTPH-Dx w/sgc	-WITBE(0200)	
					- tvvvv vv ex to age		
							
		<u></u>					
COMMENTS:	Pum J	et D	eeth - 10	Seet			
COMMENTS:	Pump J	et D	epth- 10	Sect			
COMMENTS:	Pump &	et D	epth-10	Sect			

Client/Facility#:	Chevron #9-1	122		Job Number	: 386756	;	
Site Address:	568 Peace Po	rtal Drive	e	Event Date:	9-24-	25.08	(inclusive)
City:	Blaine, WA			Sampler:	me		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Well ID	mw- 5			Date Monitored	9-241	58	
Well Diameter	2 in.		Volu	me 3/4"= 0	.02 1"= 0.04	2"= 0.17 3"=	0.38
Total Depth	(4.00 ft.		Facto	or (VF) 4"= 0			5.80
Depth to Water	8.94 tt	Che	eck if water colur	nn is less then 0.	50 ft.		
	10.06			x3 case volume		rroe Volume	qal,
Depth to Water v	w/ 80% Recharge (yaı,
•	,	A		- 0100j. <u>-10 C</u>	Time	Started:	(2400 hrs)
Purge Equipment:		San	npling Equipment	;	Time	Completed:	(2400 hrs)
Disposable Bailer			osable Bailer			to Product:	ft
Stainless Steel Bailer	,	Pres	ssure Bailer			to Water:	ft
Stack Pump		Disc	rete Bailer			carbon Thickness: Confirmation/Descrip	otion:
Suction Pump		Peris	stattic Pump				1
Grundfos		QED	Bladder Pump		Skimn	ner / Absorbant Sock	(circle one)
Peristattic Pump		Othe	er:		Amt R	emoved from Skimme	er:gai
QED Bladder Pump					Water	emoved from Well: Removed:	gal
Other:						t Transferred to:	
Start Time (purge) Sample Time/Dat Approx. Flow Rat	e: 1245 19-	215 24-88 pm.	Weather Co Water Color Sediment De	c/ondy	Rain Odor: Y/ T/ght	N	
Did well de-water	? _10 If y	es, Time: _		_		② Sampling: / o	.77
Time (2400 hr.) / Z Z 5	Volume (#e)L / .5	pH (Conductivity; µmhos/cm - (S)	Temperature (C / F)	D.O. (mg/L)	ORP (mV)	DTW 10.07
1721	$\frac{2}{7.5}$	<u> </u>	<u>x.64</u>	11.0			_ 10,41
1631	<u> </u>	44 5	2.1(11.0		.	_ 10.72
SAMPLE IS	/#I CONTAINED		BORATORY IN				
SAMPLE ID			PRESERV. TYPE	LABORATORY	L DA CTE : : -	ANALYSES	
14144-	2 x voa vial 7 x 1 liter ambers	YES YES	HCL HCL	LANCASTER		TEX+MTBE(8260)/	<u>DB/EDY/NAP</u> THALFUE(82
- 1	3 x VOA VIAL	-120		LANCASTER	NWTPH-Dx w		
	3 × VOA VIAL	 		 		31 (8760)	Nou)
	x South May	- - -	HNO.	 -		49.7 - 602 WA	v-rn)
	2 × IL Amber		NAZŠZA.	 	CPAHS	(#270)	
	2 \$				PCB'S		
COMMENTS:	X /-		HEL	4	EPH (EC	197 -602 W	4 EPH)
	free c	-1 0	-le :1 :	Car			
	pmp s	ca Di	pm 14	sect			
		11 -	·	<u> </u>			>
Add/Renlaced Lo	nck:	Add/Da	nlaced Plug		Add/Basiss	D. U	

Client/Facility#:	Chevron #9-	1122		Job Nu	mber:	386756		
Site Address:	568 Peace P	ortal Dr	ive	Event 0	Date:	9-24/25-0	18	(inclusive)
City:	Blaine, WA			 Sample	! r ":	me		(
						740		
Well ID	MW- 6			Date Moni	tored:	9.2428		
Well Diameter	2 in.	-	17	· · · · · · · · · · · · · · · · · · ·	3/4"= 0.02			1
Total Depth	18.00 ft		I .	Factor (VF)	4"= 0.66			1
Depth to Water	5.55 A	- ,,	∟ Check if water co	olumn is less th	en 0.50	ft		ı
•	12.45					Estimated Purge Volume	:	nal
Depth to Water v	w/ 80% Recharge	[(Height of \	Water Column x 0	.20) + DTW]: 8	+il		·	gui.
	-					Time Started:		(2400 hrs)
Purge Equipment:		9	ampling Equipm	ent:		Time Completed: Depth to Product:		(2400 hrs)
Disposable Bailer		E	Disposable Bailer			Depth to Water:		
Stainless Steel Bailer		F	ressure Bailer			Hydrocarbon Thic		n
Stack Pump		D	Ascrete Bailer			Visual Confirmation		
Suction Pump		P	eristaltic Pump				·	
Grundfos		C	ED Bladder Pump			Skimmer / Absorb	ant Sock (circle	e one)
Peristaltic Pump	X	O	ther:			Amt Removed from Amt Removed from	n Skimmer: n Well:	gal
QED Bladder Pump	· · · · · · · · · · · · · · · · · · ·					Water Removed:	N VVGII.	ger
Other:						Product Transferre	ed to:	
Approx. Flow Rat	te: <u>0955 19</u> te: <u>150 m1</u> ? <u>150 m1</u> ? Volume (#15 L	дрт.	Sediment	Temperat		Odor: VIN GAT al. DTW @ Sampli D.O. (mg/L)	ng: <u>), a</u> ORP (mV)	7 0,51 6,51 6,82 7,07
			ABORATORY					
SAMPLE ID MW- /g	(#) CONTAINER	REFRIG.	PRESERV. TY				YSES	
	2 x 1 liter ambers	YE\$ YE\$	HCL HCL	LANCAS LANCAS		WTPH-Gx/BTEX+MTBE	(8260)	
	Z X 1 Mer diribers		7100	DANCAG	IEK IN	WTPH-Dx w/sgc		
				- 				
				1				
COMMENTS:	Pump Sit	Depth	- 11 Ce	ut.				
Add/Replaced Lo	note: V	A 41-11	Jania 4 50:					
van.vebiscea ra	UCK	Add/I	Replaced Plug:	:	Α	dd/Replaced Bolt:		

Client/Facility#;	Chevron #9	1122		Job Number:	386756	
Site Address:	568 Peace F	ortal Dri	ve	Event Date:	9.24-08-9.85 08 (inc	:lusive)
City:	Blaine, WA			Sampler;	mL	
Well ID Well Diameter Total Depth Depth to Water	MW- 7 2 in 13.42 ft /3.34 ft	<u> </u>	Volum	ne 3/4"= 0. r (VF) 4"= 0.	66 5"= 1.02 6"= 1.50 12"= 5.80	<u></u>
Depth to Water v	4 . 58 v/ 80% Recharge	_xVF		x3 case volume :	Estimated Purge Volume:gal.	(2400 hrs)
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump		0 P 0 P	ampling Equipment: isposable Bailer ressure Bailer iscrete Bailer eristaltic Pump ED Bladder Pump ther:		Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description: Skimmer / Absorbant Sock (circle one Amt Removed from Skimmer: Amt Removed from Well: Water Removed:	ft ft :)
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water	e: 142519 e: 180 ml	gpm. yes, Time:	Weather Cor Water Color: Sediment De	Claudy scription:	Product Transferred to: Odor: Y / N //ant gal. DTW @ Sampling: _/1/ 70	
Time (2400 hr.) _/40\$ _/40\$	Volume (34) L /. S Z Z.S	рН (р. 90 (р. 8 (р.	Conductivity (µmhos/cm - 55) 502 508	Temperature (D.O. ORP (mg/L) (mV)	DTW 13.69 13.98 14.20
		ı	ABORATORY IN	FORMATION		
SAMPLE ID MW- 7	(#) CONTAINER (#) x voa vial 1. x 1 liter ambers	REFRIG. YES YES	PRESERV. TYPE HCL HCL	LABORATORY LANCASTER LANCASTER	ANALYSES NWTPH-Gx/BTEX+MTBE(8260) NWTPH-Dx w/sgc	
COMMENTS:	Pump Ser	Dep	th - 15 G	ut		
Add/Replaced Lo	ock:	Add/F	Replaced Plug:		Add/Replaced Bolt:	

Client/Facility#:	Chevron #9-	1122			Job Number:	3867	56		
Site Address:	568 Peace Po	ortal Dr	ive		Event Date:		4-08.7.3	26-2	inclusive)
City:	Blaine, WA				Sampler:	me		<u> </u>	inclusive)
						7010			
Well ID	MW- 8		_	Da	te Monitored:	9.20	408		
Well Diameter	2 in.	•	ſ		<u> </u>				
Total Depth	18.50 ft.	•		Volume Factor (V	3/4"= 0.4 (F) 4"= 0.4			3"= 0.38 12"= 5.80	
Depth to Water	5.74 ft.		L Check if water				0 - 1.50	12 - 5.60	
,	4-7	. '⊑⊒ xVF	-				l Purge Volume:		1
Depth to Water v				0 20) + D		- Estimated	ruige volume:		al.
.,		I(i idigini di	vide column x	0.20) . 2	1001. 70.00	Tir	ne Started:		(2400 hrs)
Purge Equipment:		,	Sampiling Equip	ment:			ne Completed:		(2400 hrs)
Disposable Bailer			Disposable Bailer				pth to Product:		
Stainless Steel Bailer		F	ressure Bailer	-			pth to Water: drocarbon Thicknes		
Stack Pump		į.	Discrete Bailer	_		Vis	ual Confirmation/De	es: escription:	т
Suction Pump		F	Peristaltic Pump		X	, i			
Grundfos		(1ED Bladder Pur	np		Şki	mmer / Absorbant S	Sock (circle	one)
Peristaltic Pump	X	(Other:			Am	it Removed from Sk it Removed from Wi	ammer: ell:	gal
QED Bladder Pump						Wa	iter Removed:		B411
Other:	·					Pro	duct Transferred to	:	
	40 -					-			<u></u>
Start Time (purge)			Weathe	r Condi	tions: "	<u> Pain</u>	·	_	
Sample Time/Date	e: <u>/335_/9</u> -	2428	Water C	Color: <u>C</u>	londu)	_Odor:) / N		
Approx. Flow Rate	e: <u>/SO W</u>	gom.	Sedime	nt Desc	ription:	[ight]			
Did well de-water:	? 10 If	es, Time	: `	Volume	:		V @ Sampling:	7.86	
Time	\		0.4.4.4						
Time (2400 hr.)	Volume (gal.)	pΗ	Conductivity (µmhos/cm -/ µ		Temperature F)	D.Q (mg/l			DTW
1315	1.5	1 01.	_		4	(mg/	L) (m	v)	1 50
1318	<u> (</u>	2.90	536		16.1		<u> </u>		6.07
1321	20 9	9.7/	39/		76 ·Y				7.41
	2.5	9.91	343	— -	leck				7-8G
									
			LABORATOR	Y INFO	RMATION				
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. T	YPE L	ABORATORY	Γ.	ANALYSE	S	
MW- S	x voa vial	YES	HCL		LANCASTER		EX/BTEX+MTBE(826	60)	
	7_ x 1 liter ambers	YES	HCL		LANCASTER	NWTPH-0	x w/sgc		
				-		ļ	<u>. </u>		
	-						_		
				+					
OMMENTS:	Pmp S	ct D	renth -	1) (Look				
-	U V	<u> </u>	- PAL P (<u>~~1</u>				
<u> </u>					<u> </u>		 -		
A dd (12			<u> </u>			–			
Add/Replaced Lo	JCK:	Add/	Replaced Plug	g:		Add/Rep	laced Bolt:		

Client/Facility#:	Chevron #9-1122		Job Number:	386756	
Site Address:	568 Peace Portal	Drive	Event Date:	9.24/9.2508	 (inclusive)
City:	Blaine, WA		Sampler:	ne	
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristattic Pump	MW-ST 2 in. 11.50 ft. 3.62 ft. 7.89 xVF_v/80% Recharge [(Heig	Volum Factor Check if water colum	Date Monitored: ne 3/4"= 0.0 nr (VF) 4"= 0.0 nn is less then 0.5 x3 case volume =	7 - Z4 S 02 1"= 0.04 2"= 0.17 3"= 0.3 66 5"= 1.02 6"= 1.50 12"= 5.8 0 ft. Estimated Purge Volume: Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description Skimmer / Absorbant Sock (cir.	gal(2400 hrs)(2400 hrs)ftftftft n:cle one)
QED Bladder Pump Other:				Amt Removed from Well: Water Removed: Product Transferred to:	
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water Time (2400 hr.) / 451 / 1254	e: <u>/545 /9-240</u> e: <u>/50 k1 g</u> pm.	Sediment De ime: Volur Conductivity (µmhos/cm - µS)	Temperature () F) /S.(Odor: Y / (P) One gal. DTW @ Sampling:	15 D7w 4.81 5.07 5.39
SAMPLE ID MW- ST	(#) CONTAINER REFR 0 x voa vial YES 2 x 1 liter ambers YES	S HCL	FORMATION LABORATORY LANCASTER LANCASTER	ANALYSES NWTPH-GwBTEX+MTBE(8260) NWTPH-Dx w/sgc	
COMMENTS:	pmp S	el light) Seel		
Add/Replaced Lo	ock: A	Add/Replaced Plug:		Add/Replaced Bolt:	

Client/Facility#	Chevron #9	-1122		Job Number:	386756	_
Site Address:	568 Peace F	<u>'ortal Dr</u>	ive	Event Date:	9/24-9/2568	(înclusive)
City:	Blaine, WA			Sampler:	are	•
Well ID	MW- 87	<u></u>		Date Monitored	1-24-8	
Well Diameter	AL.	 1.				, 1
Total Depth	11.85 m		Volu	me 3/4"⊂ 0. or (VF) 4"= 0.		
Depth to Water						_j
Deptil to Water	5.96 ft 5.89		Check if water colur		o0 ft. = Estimated Purge Volume:	gal.
Depth to Water	w/ 80% Recharge	€ [(Height of	Water Column x 0.20)	+ ртwj: <u>7.13</u>	Time Started:	(2400 hrs)
Purge Equipment:		S	Sampling Equipment	2	Time Completed:	
Disposable Bailer		C	Disposable Bailer		Depth to Product:	ft
Stainless Steel Baile	er		ressure Bailer		Depth to Water:	ft
Stack Pump		C	Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Description:	т
Suction Pump		F	eristattic Pump	\overline{X}		
Grundfos		c	ED Bladder Pump	-	Skimmer / Absorbant Sock (circl	le one)
Peristaltic Pump	X	C)ther:		Amt Removed from Skimmer: Amt Removed from Well:	gal
QED Bladder Pump					Water Removed:	gat
Other:					Product Transferred to:	
					<u> </u>	
Start Time (purge	a): 11,50	·	Weather Co	nditions:	Rain	· · · · · · · · · · · · · · · · · · ·
Sample Time/Da			Water Color		Odor: Y / N	
Approx. Flow Ra		øpm.	Sediment D			<u> </u>
Did well de-wate					4 574 6 6	
Did Well de-Wats	11 <u>188 2 1</u> 11	yes, rime	volu <u>د د ما ۲</u>	me: /30 m]	🚅. DTW @ Sampling:	
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (μmhos/cm - μS)	Temperature (C / F)	D.O. ORP (mg/L) (mV)	
						
			LABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES	
MW-	x voa vial	YES	HCL	LANCASTER	NWTPH-Gx/BTEX+MTBE(8260)/EDB/E	DC/
			\		Naphthalene(8260)	
	x voa vial	YES	HCL HCL	LANCASTER	FULL LIST VOC'S(8260)	
· -	x voa vial	YES	HCL	LANCASTER	VPH(ECY97 - 602 WA VPH)	
	x 1 Liter Amber	YE\$	HCL	LANCASTER	TPH-Dx w/sgc	
	x 1 Liter Amber x 1 Liter Amber	YES YES	NeZS2O3	LANCASTER	EPH(ECY97 - 802 WA EPH CPAH's (8270)	
-/	x 1 Liter Amber	YES	Na2S2O3	LANCASTER	PCB'S (8082)	
	× 500ml Poly	YES	HNO3	LANCASTER	TOTAL LEAD (6020)	
COMMENTS:	Well Dec	vatered	do Gold	1-86, retur	ned rest tay to	<u> </u>
				1000		·
Add/Replaced L	.ock:	Add/	Replaced Plug:		Add/Replaced Bolt:	-

Client/Facility#:	Chevron #9-1122		Job Number:	386756	
Site Address:	568 Peace Portal	Drive	Event Date:	9/74-9/25/08 OF	iclusive)
City:	Blaine, WA		Sampler:	m "	,
Well ID	MW-97		ate Monitored:	9-2408	
Well Diameter	in.				
Total Depth	8.0 ft.	Volum Factor			
Depth to Water	4.54 ft.	Check if water column			
	4.01 xvF			Estimated Purge Volume:ga	
Depth to Water v	v/ 80% Recharge ((Height				^{II.}
	/a / tookidigo [[ricigi]]	OF TTELET COIGNITY C.20) T	D100j	Time Started:	(2400 hrs)
Purge Equipment:		Sampling Equipment:		Time Completed:	_(2400 hrs)
Disposable Bailer		Disposable Bailer		Depth to Product:	ft
Stainless Steel Bailer		Pressure Bailer		Depth to Water:	ft
Stack Pump		Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Description:	—_п
Suction Pump	<u> </u>	Peristaltic Pump		visual Committation Description.	
Grundfos		QED Bladder Pump		Skimmer / Absorbant Sock (circle o	
Peristaltic Pump		Other:		Amt Removed from Skimmer:	gai
QED Bladder Pump				Amt Removed from Well:	gai
Other:				Product Transferred to:	····
	· 				
Start Time (purge)	1425	Weather Con	ditions:	Rain	
Sample Time/Dat		_		2417	
•		Water Color:		Odor: Y / N	
Approx. Flow Rat		Sediment Des			
Did well de-water	? _ If yes, Tir	ne: <u> </u>	ie: <u>/১০ /</u> (գ	DTW @ Sampling:	
Time	Volume	Conductivity	Temperature	D.O. ORP	
(2400 hr.)	(gal.) pH	(µmhos/cm (µS))	(6)/ F)	(mg/L) (mV)	
			,	, and	
				 /	
		 .			
0.14451 = 15	400 00000	LABORATORY INF			
SAMPLE ID MW- AT	(#) CONTAINER REFRI		LABORATORY	ANALYSES	
. 10144-011	x voa vial YES	HCL HCL		NWTPH-Gx/BTEX+MTBE(8260)	
 	1	1	- CANOAGTER	THE Wage	
/			<u> </u>		
		4			
/					-
COMMENTS:	BERKEN STONAL	Well Deur	eterod or	7 80 Songie.	and
MULL 13	50 Samole	I SE GCOC	1 / - 1-		THE
TANK TO CHAM	y su severally	MING FINGS	a naty	10 Somple,	
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· ·			-	
Add/Replaced Lo	ock: Ac	ld/Replaced Plug:		Add/Replaced Bolt:	

Client/Facility#:	Chevron #9-11	22	Job Number:	38675 6		
Site Address:	568 Peace Port	al Drive	Event Date:	9/24-9/2	25.08	(inclusive)
City:	Blaine, WA		Sampler:	ml	<u></u>	(
						
Well ID	MW- 0T		Date Monitored:	9-2488		
Well Diameter	in.	[v	folume 3/4"= 0.1	02 1"= 0.04 2"= 0.	17 3"= 0.38	l
Total Depth	11.92 ft.	F.	actor (VF) 4"= 0.0			
Depth to Water	4.35 A		olumn is less then 0.5			J
	<u>7.57 </u>	F <u></u>	x3 case volume	Estimated Purge Volume	e:	gal.
Depth to Water v	v/ 80% Recharge [(H	eight of Water Column x 0.	20) + DTW]: <u>\$.\$</u>	4		
Purge Equipment:		Samplina Equipme	4.	Time Started: Time Completed:	 -	(2400 hrs) (2400 hrs)
Disposable Bailer		Sampling Equipme	ent;	Depth to Product	<u> </u>	ft
Stainless Steel Bailer		Disposable Bailer Pressure Bailer		Depth to Water:_		ft
Stack Pump		Discrete Bailer		Hydrocarbon Thio	kness:	ft
Suction Pump		Peristaltic Pump	X	Visual Confirmation	on/Description:	- 1
Grundfos		QED Bladder Pump	{}	Skimmer / Absort	ant Sock (circle	one)
Peristaltic Pump	X	Other:		Amt Removed fro	m Skimmer:	gai
QED Bladder Pump				Arnt Removed fro Water Removed:		gal
Other:				Product Transferr		
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water Time (2400 hr.)	e: 09 5 A-Z e: 50 ml ppi ? \\25 if yes	5 −a\ Water Co	Temperature	Odor: Y / DP	ORP (mV)	
		LABORATORY	INFORMATION			
SAMPLE ID		FRIG. PRESERV. TYP		ANA	LYSES	
101 -MM		YES HCL	LANCASTER	NWTPH-Gx/BTEX+MTB	E(8260)	
	x 1 liter ambers	YES HCL	LANCASTER	NWTPH-Dx w/sgc		
COMMENTS: (Only able	o collect or	novah hade NWTPH-Dx	y during s	ampling	
Add/Replaced Lo	ock:	Add/Replaced Plug:		Add/Replaced Bolt:		

Chevron Northwest Region Analysis Request/Chain of Custody

Acct. #: 113(00 Sample # 5 4 8) 473 - 83

Lancaster Laboratories
Where quality is a science

Where quality is a science.				¥.	Acct. #:	11300C		Sample #: 5 4 8) 4 7		2	82	SCR#:			
						L	ſ	Analyses Requested	Reque	麗		chicilitaco)	# E	275	. #
Facility #: SS#9-1122/QMD G-R#386756			Γ	Matrix	L	Ц		Preservation Codes	ton Co	1		1	Presentative Codes	١,	
Site Address: 568 Peace Portal Drive, BLAJNE, WA	E WA					포 (포	Ŧ	NH		0 1		H=HG	T = Thiosulfate	ulfate	
Chevron PM: -8H-CS AND 9 129 Dised Consultant:	tan.	SAICPC				<i>0722</i>) upuple		02.5 1	(W	2)3		8 = H ₂ SO ₄	B = NaOH O = Other	I L	
Consultant/Office: G-R, Inc., 6747 Sierra Court, Suite J, Dublin, Ca.	ute J.	Sublin, Ca	94568	elde 830	neni	_	_	_	N Z	AS)N		3 Value reporting needed	rting needed		
Consultant Prj. Mgr. Deenna L. Harding (deanna@grinc.com)	grinc	(com)		10년 (19년 (etno	<u> </u>		ed Ang tel Clea	zenigu Z <i>er</i> y	HH4 (0)	U	☐ Must meet lowest detection Dessible for 8290 commound	Must meet lowest detection lin Dosable for 8280 communels	for limits	
Consultant Plyone #925-551-7555 Fax #		925-551-7869	666		of C			indendi Silcar G		12	0	8021 MTBE Cantimution	riemeien	2	_
~			Ŀ	<u>.</u>		_	86021			4) (4/2	s) s	Confirm MTBE + Naphtha	E + Nephi		
Service Order #:	انن					BTM	m GAY(,	_	43/	. 8:	Confirm highest hit by 8260	eest hit by 82 its to 8060	9	
Samole Identification Cole	Collected	Time	Grab	lio2 nateW	☐ IIC IBJOT	+ X3TE Tal	 ∪ 	7 .//// o7 bee	HATTWI	180±	7d.	5.0	oxy a on highest hit	質	
Ø.₩			_	+	_	Z					1		City & On all File		
MW.1 425-01	201	830	X	X	مه	×	Z.	×	\perp		\pm				
	1.4	1135	×	×	O	×	₫ X	<u>≺</u> ↓	×	> ×	×				_
MW-3 9-24-08	4-4	2701	X	×	8	Z		\ \		<u> </u>	₹				_
		0260	X	X	80	×	X	×							_
10h2.9 2-mm	\rightarrow	Sh2)	X	X	00	X X	X	人 大	<u> </u>	X X	×				
او	*	23.60	X	X	8	X	X	×							
MW-7 4.2	4-2408	1425	X	×	ða	<u>ک</u>	X	×							_
NW -8 4.2	Nehz-b	1335	l X	×	000	X	X	×							
M.	. Т	1	43	k	7		ĮĮ.	W							_
	<u>.</u>	34.50	N.	M	1		10								
				+-	1			+	_	_	+				
Turnscound Time Requested (TAT) (please crots)		Religion	Tag (A] //	1		를 차	1 Ime	 	Raceived by:	1		Page 4	Time	
24 hour 4 day 5 day		S S S S S S S S S S S S S S S S S S S	nguished by:	6	4 1	\setminus	9 2 2	2 e	4	Received by:	ľ		page Date	Time	
Data Package Options (please circle if required)	Chelena	+	Refinquished by:		V		쀨	E		Received by:	1		1		
	2						*****							9	
Type VI (Rew Data) Disk / EDD WIP (RwQCB) Standard Formet		Refindus UPS	ReInquished by Compardal Carrier; UPS PedEx Other		Cerrier: Other				2) Pa	Man	15. A. S.	Time Sy C	
Disk Other.		Tempen	Temperature Upon Receipt 20	Receipt	9			1	*	Custody Seeds Intact		% (Sec.)	Z O	<u>{</u>	

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

3468 Rev. 8/8/01

Chevron Northwest Region Analysis Request/Chain of Custody

Acct. #. 113(00) Sample #: 548 473 - 83

A Lancaster Laboratories
Where quality is a science.

Where quality is a science.		Acct. #.	Acet # 11340D		겂	Sample # 5481472 - 83	S. SCR#		
			L	Ą	stytes H	Analyses Requested	Corto	DIGHT #DINGS	かるこ
Facility # SS#9-1122-QM[) G-R#386756	-	Matrix			Personal Control	M Cortex			
							로 포 -	rervative Codes T = Thiosulfate	es suffate
Chewron PM: BH-CS-Myglighted Consultant: SAICP	5	-] upude			·	8 = H20,	3 B = NaOH	Ξъ
Consultant/Office: G-R, Inc., 5747 Sierra Court, Suite J, Dutblin,	Ca. 94568	SEC	y S		po	uop	euliev C	J value reporting needed	
Consultant Prj. Mgr.: Dearna L. Harding (dearna@grinc.com)		Por Stro	gese	oce pe	Meth Meth	ragin	Must m	Must meet lowest detection limits possible for 8260 compounds	tion limits
Consultant Phone # 925-551-7555 Fax #: 925	925-551-7899	<u> </u>	□ 42	hoote		renb [8021 MTB	8021 MTBE Confirmation	
tocal	9	_			eig [☐ Confirm	Confirm MTBE + Naphthalene	halene
Service Order #:	diso	τİΑ	urėcas	_) nexe		Confin	Confirm highest hit by 8260	
	Time dene dene	nevsV	+ X31	47	DI PRO	Herv	5 5	_ oxy s on highest hit	est Hi
	工	1	-	_	,		i K	exy 8 on all hits	T ایر
		-	-	+	+			Comments / Kemarks	
THE PERSON				+	+				
				-					
All the state of				-					
はなり、住民は									
				_					
7-2-0	K V	8 X	×	X,	×				
BO Sess-P IOI - WAY	X 5/80	<u>ر</u> لا	×	×	X				
		+					-		
Nand Time Requested (TAT) (please circle)	Reiling Marked by:	1		ag k	Ē	Received by:	,	a a	Time
<u> </u>	Relinquished by:	5		Pate	S Page	Received by:		į	į
fenc fen-							\	<u>.</u>	1
le if required	Refinquished by:	\	-		Time	Received by:		8	E E
Data) Disk / EDD	Redinquistred by Dengmendal Carrier: UPS FedEx Other	ardial Carrier:				Double of the second	NO	4.70	Hime
Other	Temperature Upon Receipted, 0 - 4.0c°	F-0.5	6.0c°		7	Custody Seeks Intect	I BOOK	ବି ଆଧ	020
				I				!	

Lancaster Laboratories, inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Coples: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

3468 Rev. 8/6/01

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2900 Fex: 717-656-2681 * www.lancastertabs.com

ANALYTICAL RESULTREGETVED

Prepared for:

OCT 1 7 2008

Chevron

6001 Bollinger Canyon Road

L4310 San Ramon CA 94583 GETTLER-RYAN INC.
GENERAL CONTRACTORS

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1112142. Samples arrived at the laboratory on Friday, September 26, 2008. The PO# for this group is 0015024861 and the release number is SKANCE.

Client Description	Lancaster Labs Number
QA Water Sample	5481472
MW-1 Grab Water Sample	5481473
MW-2 Grab Water Sample	5481474
MW-3 Grab Water Sample	5481475
MW-4 Grab Water Sample	5481476
MW-5 Grab Water Sample	5481477
MW-6 Grab Water Sample	5481478
MW-7 Grab Water Sample	5481479
MW-8 Grab Water Sample	5481480
MW-5T Grab Water Sample	5481481
MW-10T Grab Water Sample	5481482

ELECTRONIC COPY TO

SAIC c/o Gettler-Ryan

Attn: Cheryl Hansen

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fex 717-656-2681 * www.fancasterfabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Chad A. Moline Group Leader

2425 New Holland Pike, PO Box 12425. Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW5481472

Group No. 1112142

QA Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA

Collected: 09/24/2008

Account Number: 11260

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PORQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	N.D.	50	ug/l	1
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 11:58	Carrie E Youtzy	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/02/2008 05:47	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 11:58	Carrie E Youtzy	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/02/2008 05:47	Michael A Ziegler	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-658-2681• www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW5481473

Group No. 1112142

Account Number: 11260

MW-1 Grab Water Sample

Facility# 91122 Job# 386756
568 Peace Portal Drive-Blaine, WA
Collected:09/25/2008 08:30 by Mi

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Chevron 6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PORM1

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095 02096	Diesel Range Organics Heavy Range Organics	n.a. n.a.	N.D. N.D.	80 100	ug/l ug/l	1
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	120	50	ug/l	1
06054	BTEX+MTBE by 8260B					
02010 05401 05407	Methyl Tertiary Butyl Ether Benzene Toluene	1634-04-4 71-43-2 108-88-3	N.D. 1 N.D.	0.5 0.5 0.5	ug/l ug/l ug/l	1 1 1
05415 06310	Ethylbenzene Xylene (Total)	100-41-4 1330-20-7	N.D. N.D.	0.5 0.5	ug/l ug/l	1

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/04/2008 00:15	Diane V Do	1
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 13:25	Carrie E Youtzy	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/02/2008 06:12	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 13:25	Carrie E Youtzy	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/02/2008 06:12	Michael A Ziegler	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 08:45	Kerrie A Freeburn	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 5

Lancaster Laboratories Sample No. WW5481474

Group No. 1112142

MW-2 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive-Blaine, WA

Collected: 09/24/2008 11:35 by ML

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35 Discard: 11/16/2008

00639 PCB-1016

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

0.098

ug/l

1

PORM2

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06035	Lead	7439-92-1	4.5	0.050	ug/l	1
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095	Diesel Range Organics	n.a.	1,200	400	ug/l	5
02096	Heavy Range Organics	n.a.	N.D.	500	ug/l	5
05665	WA - VPH waters					
05328	Methyl t-butyl ether	1634-04-4	N.D.	5.0	ug/l	5
05537	Benzene	71-43-2	1,570	5.0	ug/l	5
05539	Toluene	108-88-3	62.4	5.0	ug/l	5
05542	Ethylbenzene	100-41-4	1,510	5.0	ug/l	5
05544	m,p-Xylenes	1330-20-7	618	10.0	ug/l	5
05548	o-Xylene	95-47-6	35.3	5.0	ug/l	5
05552	C5-C6 Aliphatic Hydrocarbons	n.a.	1,310	125	ug/l	5
05642	C6-C8 Aliphatic Hydrocarbons	n.a.	3,810	125	ug/l	5
05644	C8-C10 Aliphatic Hydrocarbons	n.a.	1,060	125	ug/l	5
05645	C8-C10 Aromatic Hydrocarbons	n.a.	2,360	125	ug/l	5
	The n-decane %drift value for t	he calibration	check standard a	associated with t	he	
	sample was outside the method c					
	adverse effect on the data.					
05979	WA EPH in Water					
05980	>C10 - C12 Aliphatic	n.a.	84	9.8	ug/l	1
05981	>C12 - C16 Aliphatic	n.a.	N.D.	9.8	ug/l	1
05982	>C16 - C21 Aliphatic	n.a.	N.D.	9.8	ug/l	1
05983	>C21 - C34 Aliphatic	n.a.	N.D.	9.8	ug/l	1
05984	>C10 - C12 Aromatic	n.a.	1,500	98	ug/l	10
05985	>C12 - C16 Aromatic	n.a.	560	98	ug/l	10
05986	>C16 - C21 Aromatic	n.a.	N.D.	110	ug/l	10
05987	>C21 - C34 Aromatic	n.a.	N.D.	150	ug/l	10
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	14,000	250	ug/l	5
00173	PCBs in Water					

12674-11-2 N.D.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 5

Lancaster Laboratories Sample No. WW5481474

Group No. 1112142

MW-2 Grab Water Sample Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected:09/24/2008 11:35 by ML

Account Number: 11260

Submitted: 09/26/2008 09:20

Chevron 6001 Bollinger Canyon Road

Reported: 10/16/2008 at 14:35 Discard: 11/16/2008

L4310

San Ramon CA 94583

PORM2

LOIGIZ				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05407	Toluene	108-88-3	57	1	ug/l	2
05408	1,1,2-Trichloroethane	79-00-5	N.D.	2	ug/l	2
05409	Tetrachloroethene	127-18-4	N.D.	2	ug/l	2
05410	1,3-Dichloropropane	142-28-9	N.D.	2	ug/l	2
05411	Dibromochloromethane	124-48-1	N.D.	2	ug/l	2
05412	1,2-Dibromoethane	106-93-4	N.D.	1	ug/l	2
05413	Chlorobenzene	108-90-7	N.D.	2	ug/l	2
05414	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	2	ug/l	2
05415	Ethylbenzene	100-41-4	1,600	10	ug/l	20
05416	m+p-Xylene	1330-20-7	580	1	ug/l	2
05417	o-Xylene	95-47-6	35	1	ug/l	2
05418	Styrene	100-42-5	N.D.	2	ug/l	2
05419	Bromoform	75-25-2	N.D.	2	ug/l	2
05420	Isopropylbenzene	98-82-8	74	2	ug/l	2
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	2	ug/l	2
05422	Bromobenzene	108-86-1	N.D.	2	ug/l	2
05423	1,2,3-Trichloropropane	96-18-4	N.D.	2	ug/l	2
05424	n-Propylbenzene	103-65-1	190	2	ug/l	2
05425	2-Chlorotoluene	95-49-8	N.D.	2	ug/l	2
05426	1,3,5-Trimethylbenzene	108-67-8	40	2	ug/l	2
05427	4-Chlorotoluene	106-43-4	N.D.	2	ug/l	2
05428	tert-Butylbenzene	98-06-6	N.D.	2	ug/l	2
05429	1,2,4-Trimethylbenzene	95-63-6	130	2	ug/1	2
05430	sec-Butylbenzene	135-98-8	9	2	ug/l	2
05431	p-Isopropyltoluene	99-87-6	2	2	ug/l	2
05432	1,3-Dichlorobenzene	541-73-1	N.D.	2	ug/1	2
05433	1,4-Dichlorobenzene	106-46-7	N.D.	2	ug/l	2
05434	n-Butylbenzene	104-51-8	17	2	ug/l	2
05435	1,2-Dichlorobenzene	95-50-1	N.D.	2	ug/l	2
05436	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	4	ug/l	2
05437	1,2,4-Trichlorobenzene	120-82-1	N.D.	2	ug/l	2
05438	Hexachlorobutadiene	87-68-3	N.D.	4	ug/l	2
05439	Naphthalene	91-20-3	560	2	ug/l	2
05440	1,2,3-Trichlorobenzene	87-61-6	N.D.	2	ug/l	2
08202	EPA SW 846/8260 - Water					
02010	Methyl Tertiary Butyl Ether	1634-04-4	54	1	ug/l	2
06302	Acetone	67-64-1	41	12	ug/l	2
06303	Carbon Disulfide	75-15-0	N.D.	2	ug/l	2
06305	2-Butanone	78-93-3	N.D.	6	ug/l	2
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	2	ug/l	2
	,			-	49/1	-

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 5

Lancaster Laboratories Sample No. WW5481474

Group No. 1112142

MW-2 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive-Blaine, WA Collected: 09/24/2008 11:35 by ML

Account Number: 11260

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PORM2

PORMZ				an benedered		
CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection	Units	Factor
	• • • • • • • • • • • • • • • • • • • •	CAD MUMBEL	MEDUIC	Limit	Units	FACTOR
00640	PCB-1221	11104-28-2	N.D.	0.098	ug/l	1
00641	PCB-1232	11141-16-5	N.D.	0.20	ug/l	1
00642	PCB-1242	53469-21-9	N.D.	0.098	ug/l	1
00643	PCB-1248	12672-29-6	N.D.	0.098	ug/l	1
00644	PCB-1254	11097-69-1	N.D.	0.098	ug/l	1
00645	PCB-1260	11096-82-5	N.D.	0.098	ug/l	1
08357	PAHs in waters by SIM					
08374	Benzo(a) anthracene	56-55-3	N.D.	0.0098	ug/l	1
08375	Chrysene	218-01-9	N.D.	0.0098	ug/l	1
08376	Benzo(b)fluoranthene	205-99-2	N.D.	0.0098	ug/l	1
08377	Benzo(k)fluoranthene	207-08-9	N.D.	0.0098	ug/l	1
08378	Benzo(a) pyrene	50-32-8	N.D.	0.0098	ug/l	1
08379	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.0098	ug/l	1
08380	Dibenz(a,h)anthracene	53-70-3	N.D.	0.0098	ug/l	1
05382	EPA SW846/8260 (water)					
05384	Dichlorodifluoromethane	75-71-8	N.D.	4	ug/l	2
05385	Chloromethane	74-87-3	N.D.	2	ug/l	2
05386	Vinyl Chloride	75-01-4	N.D.	2	ug/l	2
05387	Bromomethane	74-83-9	N.D.	2	ug/l	2
05388	Chloroethane	75-00-3	N.D.	2	ug/l	2
05389	Trichlorofluoromethane	75-69-4	N.D.	4	ug/l	2
05390	1,1-Dichloroethene	75-35-4	N.D.	2	ug/l	2
05391	Methylene Chloride	75-09-2	N.D.	4	ug/l	2
05392	trans-1,2-Dichloroethene	156-60-5	N.D.	2	ug/l	2
05393	1,1-Dichloroethane	75-34-3	N.D.	2	ug/l	2
05394	2,2-Dichloropropane	594-20-7	N.D.	2	ug/l	2
05395	cis-1,2-Dichloroethene	156-59-2	N.D.	2	ug/l	2
05396	Chloroform	67-66-3	N.D.	2	ug/l	2
05397	Bromochloromethane	74-97-5	N.D.	2	ug/l	2
05398	1,1,1-Trichloroethane	71-55-6	N.D.	2	ug/l	2
05399	Carbon Tetrachloride	56-23-5	N.D.	2	ug/l	2
05400	1,1-Dichloropropene	563-58-6	N.D.	2	ug/l	2
05401	Benzene	71-43-2	1,700	10	ug/l	20
05402	1,2-Dichloroethane	107-06-2	N.D.	1	ug/l	2
05403	Trichloroethene	79-01-6	N.D.	2	ug/l	2
05404	1,2-Dichloropropane	78-87-5	N.D.	2	ug/l	2
05405	Dibromomethane	74-95-3	N.D.	2	ug/l	2
05406	Bromodichloromethane	75-27-4	N.D.	2	ug/l	2
					- J	*

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 5

Lancaster Laboratories Sample No. WW5481474

Group No. 1112142

MW-2 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected: 09/24/2008 11:35

Account Number: 11260

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35

L4310

Discard: 11/16/2008

6001 Bollinger Canyon Road

Chevron

San Ramon CA 94583

PORM2

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection	Units	Dilution Factor
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	Limit 2	ug/l	2
06308	4-Methyl-2-pentanone	108-10-1	N.D.	6	ug/l	2
06309	2-Hexanone	591-78-6	N.D.	6	ug/l	2

State of Washington Lab Certification No. C259 Carcinogenic PAHs have been reported for this sample

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT			0111	Analysis		513
No.	Analysis Name	Method	Trial#		3	Dilution
06035	Lead				Analyst	Factor
		SW-846 6020	1	10/07/2008 08:33	Parker D Lindstrom	1
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/07/2008 12:26	Diane V Do	5
05665	WA - VPH waters	ECY 97-602 WA VPH	1	10/08/2008 14:50	K. Robert Caulfeild- James	5
05979	WA EPH in Water	ECY 97-602 WA EPH	1	10/15/2008 12:10	Gordon A Lodde	10
05979	WA EPH in Water	ECY 97-602 WA EPH	1	10/15/2008 13:00	Gordon A Lodde	1
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 13:46	Carrie E Youtzy	5
00173	PCBs in Water	SW-846 8082	1	10/03/2008 02:49	Jamie L Brillhart	1
08357	PAHs in waters by SIM	SW-846 8270C SIM	1	09/30/2008 05:56	Linda M Hartenstine	1
05382	EPA SW846/8260 (water)	SW-846 8260B	1	10/07/2008 15:22	Emily R Styer	2
05382	EPA SW846/8260 (water)	SW-846 8260B	1	10/07/2008 15:45	Emily R Styer	20
08202	EPA SW 846/8260 - Water		1	10/07/2008 15:22	Emily R Styer	2
00497	Silica Gel Fractionation MA HC	SW-846 3630C modified	1	10/02/2008 14:45	Denise L Trimby	1
00813	BNA Water Extraction	SW-846 3510C	1	09/29/2008 16:30	Kevin P Love	1
00817	Water Sample Pest. Extraction	SW-846 3510C	1	09/29/2008 23:20	Olivia I Santiago	1
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 13:46	Carrie E Youtzy	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/07/2008 15:22	Emily R Styer	2
01163	GC/MS VOA Water Prep	SW-846 5030B	2	10/07/2008 15:45	Emily R Styer	20
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	10/01/2008 09:40	Denise K Conners	1
07326	EPH Water Extraction	ECY 97-602 WA EPH	1	10/02/2008 14:50	Kelli M Barto	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 5 of 5

Lancaster Laboratories Sample No. WW5481474

Group No. 1112142

MW-2 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected:09/24/2008 11:35 by MI

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

PORM2

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

2425 New Holland Pike. PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fex: 717-656-2681 • www.lancasteriabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW5481475

Group No. 1112142

MW-3 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected: 09/24/2008 10:45

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PORM3

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095 02096	Diesel Range Organics Heavy Range Organics	п.а. п.а,	99 N.D.	79 99	ug/1 ug/1	1 1
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	350	50	ug/l	1
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/03/2008 14:09	Diane V Do	1
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 14:30	Carrie E Youtzy	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/02/2008 06:37	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 14:30	Carrie E Youtzy	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/02/2008 06:37	Michael A Ziegler	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW5481476

Group No. 1112142

MW-4 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected:09/24/2008 09:00 by ML

Account Number: 11260

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35

L4310

Chevron

Discard: 11/16/2008

6001 Bollinger Canyon Road

San Ramon CA 94583

POR-4

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095	Diesel Range Organics	n.a.	N.D.	79	ug/l	1
02096	Heavy Range Organics	n.a,	N.D.	99	ug/l	1
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	N.D.	50	ug/l	1
06054	BTEX+MTBE by 82603					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/1	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/03/2008 14:29	Diane V Do	1
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 14:52	Carrie E Youtzy	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/03/2008 05:44	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 14:52	Carrie E Youtzy	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/03/2008 05:44	Michael A Ziegler	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 5

Lancaster Laboratories Sample No. WW5481477

Group No. 1112142

MW-5 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive-Blaine, WA

Collected:09/24/2008 12:45

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

00639 PCB-1016

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

POR-5

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06035	Lead	7439-92-1	4.6	0.050	ug/l	1
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095	Diesel Range Organics	n.a.	1,100	79	ug/l	1
02096	Heavy Range Organics	n.a.	N.D.	99	ug/l	1
05665	WA - VPH waters					
05328	Methyl t-butyl ether	1634-04-4	21.4	1.0	ug/l	1
05537	Benzene	71-43-2	404	1.0	ug/l	1
05539	Toluene	108-88-3	28.4	1.0	ug/l	1
05542	Ethylbenzene	100-41-4	362	1.0	ug/l	1
05544	m,p-Xylenes	1330-20-7	679	2.0	ug/l	1
05548	o-Xylene	95-47-6	174	1.0	ug/l	1
05552	C5-C6 Aliphatic Hydrocarbons	n.a.	223	25.0	ug/l	1
05642	C6-C8 Aliphatic Hydrocarbons	n.a.	1,570	25.0	uq/l	1
05644	C8-C10 Aliphatic Hydrocarbons	n.a.	1,220	25.0	ug/l	1
05645	C8-C10 Aromatic Hydrocarbons	n.a.	2,190	25.0	ug/l	1
	The n-decane %drift value for t	he calibration	check standard a	ssociated with th		
	sample was outside the method c					
	adverse effect on the data.					
05979	WA EPH in Water					
05980	>C10 - C12 Aliphatic	n.a.	280	9.8	ug/l	1
05981	>C12 - C16 Aliphatic	n.a.	30	9.8	ug/l	1
05982	>C16 - C21 Aliphatic	n.a.	N.D.	9.8	ug/l	1
05983	>C21 - C34 Aliphatic	n.a.	57	9.8	ug/l	1
05984	>C10 - C12 Aromatic	n.a.	910	49	ug/l	5
05985	>C12 - C16 Aromatic	n.a.	310	49	ug/l	5
05986	>C16 - C21 Aromatic	n.a.	N.D.	54	ug/l	5
05987	>C21 - C34 Aromatic	n.a.	N.D.	74	ug/l	5
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	9,600	250	ug/l	5
00173	PCBs in Water					

12674-11-2

N.D.

0.098

ug/l

ug/l

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 5

Lancaster Laboratories Sample No. WW5481477

Group No. 1112142

MW-5 Grab Water Sample Facility# 91122 Job# 386756

568 Peace Portal Drive-Blaine, WA

Collected: 09/24/2008 12:45 by ML

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35 Discard: 11/16/2008

05403 Trichloroethene

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

As Received

L4310

San Ramon CA 94583

P	0	R	_	Ц

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
00640	PCB-1221	11104-28-2	N.D.	0.098	ug/l	1
00641	PCB-1232	11141-16-5	N.D.	0.20	ug/l	1
00642	PCB-1242	53469-21-9	N.D.	0.098	ug/l	1
00643	PCB-1248	12672-29-6	N.D.	0.098	ug/l	1
00644	PCB-1254	11097-69-1	N.D.	0.098	ug/l	1
00645	PCB-1260	11096-82-5	N.D.	0.098	ug/l	1
08357	PAHs in waters by SIM					
08374	Benzo(a)anthracene	56-55-3	N.D.	0.10	ug/l	10
08375	Chrysene	218-01-9	N.D.	0.10	ug/l	10
08376	Benzo(b)fluoranthene	205-99-2	N.D.	0.10	ug/l	10
08377	Benzo(k)fluoranthene	207-08-9	N.D.	0.10	ug/l	10
08378	Benzo(a)pyrene	50-32-8	N.D.	0.10	ug/l	10
08379	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.10	ug/l	10
08380	Dibenz(a,h)anthracene Due to the sample matrix an i	53-70-3	N.D.	0.10	ug/l	10
	analysis. Therefore, the rep compounds were raised.	orting limits fo	r the GC/MS semi	volatile		
05382	EPA SW846/8260 (water)					
05384	Dichlorodifluoromethane	75-71-8	N.D.	2	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1	ug/l	1
05389	Trichlorofluoromethane	75-69-4	N.D.	2	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2	ug/l	1
05392	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1	ug/l	1
05394	2,2-Dichloropropane	594-20-7	N.D.	1	ug/l	1
05395	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	ug/l	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05397	Bromochloromethane	74-97-5	N.D.	1	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	1
05399	Carbon Tetrachloride	56-23-5	N.D.	1	ug/l	1
05400	1,1-Dichloropropene	563-58-6	N.D.	1	ug/l	1
05401	Benzene	71-43-2	380	5	ug/l	10
05402	1,2-Dichloroethane	107-06-2	N.D.	0.5	ug/l	1
05403	Triablesesthese	70 01 6	** 5		1-	

N.D.

79-01-6

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 5

Lancaster Laboratories Sample No. WW5481477

Group No. 1112142

MW-5 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected:09/24/2008 12:45 by MI

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

D	\cap	Ð	_	
-	v	'+`		~

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05404	1,2-Dichloropropane	78-87-5	N.D.	1	ug/l	1
05405	Dibromomethane	74-95-3	N.D.	1	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1	ug/l	1
05407	Toluene	108-88-3	24	0.5	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05410	1,3-Dichloropropane	142-28-9	N.D.	1	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1	ug/l	1
05412	1,2-Dibromoethane	106-93-4	N.D.	0.5	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1
05414	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	1	ug/l	1
05415	Ethylbenzene	100-41-4	320	5	ug/l	10
05416	m+p-Xylene	1330-20-7	760	5	ug/l	10
05417	o-Xylene	95-47-6	180	0.5	ug/l	1
05418	Styrene	100-42-5	N.D.	1	ug/l	1
05419	Bromoform	75-25-2	N.D.	1	ug/l	1
05420	Isopropylbenzene	98-82-8	22	1	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1	ug/l	1
05422	Bromobenzene	108-86-1	N.D.	1	ug/l	1
05423	1,2,3-Trichloropropane	96-18-4	N.D.	1	ug/l	1
05424	n-Propylbenzene	103-65-1	43	1	ug/l	1
05425	2-Chlorotoluene	95-49-8	N.D.	1	ug/l	1
05426	1,3,5-Trimethylbenzene	108-67-8	140	1	ug/l	1
05427	4-Chlorotoluene	106-43-4	N.D.	1	ug/l	1
05428	tert-Butylbenzene	98-06-6	N.D.	1	ug/l	1
05429	1,2,4-Trimethylbenzene	95-63-6	440	10	ug/l	10
05430	sec-Butylbenzene	135-98-8	4	1	ug/l	1
05431	p-Isopropyltoluene	99-87-6	6	1	ug/l	1
05432	1,3-Dichlorobenzene	541-73-1	N.D.	1	ug/l	1
05433	1,4-Dichlorobenzene	106-46-7	N.D.	1	ug/l	1
05434	n-Butylbenzene	104-51-8	7	1	ug/l	1
05435	1,2-Dichlorobenzene	95-50-1	N.D.	1	ug/l	1
05436	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	ug/l	1
05437	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	ug/l	1
05438	Hexachlorobutadiene	87-68-3	N.D.	2	ug/l	1
05439	Naphthalene	91-20-3	130	1	ug/l	1
05440	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	ug/l	1
08202	EPA SW 846/8260 - Water					
02010	Methyl Tertiary Butyl Ether	1634-04-4	13	0.5	ug/l	1
06302	Acetone	67-64-1	21	6	ug/l	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 5

Lancaster Laboratories Sample No. WW5481477

Group No. 1112142

MW-5 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected: 09/24/2008 12:45 by ML

Submitted: 09/26/2008 09:20 Chevron

Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Account Number: 11260

6001 Bollinger Canyon Road L4310

San Ramon CA 94583

POR-5

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method	**- 1 box	Dilution
110.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
06303	Carbon Disulfide	75-15-0	N.D.	1	ug/l	1
06305	2-Butanone	78-93-3	5	3	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	ug/l	1
06308	4-Methyl-2-pentanone	108-10-1	4	3	ug/l	1
06309	2-Hexanone	591-78-6	6	3	ug/l	1

State of Washington Lab Certification No. C259 Carcinogenic PAHs have been reported for this sample

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT	- Analysis					Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	10/07/2008 08:36	Parker D Lindstrom	1
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/03/2008 14:48	Diane V Do	1
05665	WA - VPH waters	ECY 97-602 WA VPH	1	10/08/2008 16:13	K. Robert Caulfeild- James	1
05979	WA EPH in Water	ECY 97-602 WA EPH	1	10/15/2008 13:51	Gordon A Lodde	5
05979	WA EPH in Water	ECY 97-602 WA EPH	1	10/15/2008 14:43	Gordon A Lodde	1
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 15:13	Carrie E Youtzy	5
00173	PCBs in Water	SW-846 8082	1	10/03/2008 03:02	Jamie L Brillhart	1
08357	PAHs in waters by SIM	SW-846 8270C SIM	1	09/30/2008 15:55	Timothy J Trees	10
05382	EPA SW846/8260 (water)	SW-846 8260B	1	10/07/2008 14:35	Emily R Styer	1
05382	EPA SW846/8260 (water)	SW-846 8260B	1	10/07/2008 14:58	Emily R Styer	10
08202	EPA SW 846/8260 - Water	SW-846 8260B	1	10/07/2008 14:35	Emily R Styer	1
00497	Silica Gel Fractionation MA HC	SW-846 3630C modified	1	10/02/2008 14:45	Denise L Trimby	1
00813	BNA Water Extraction	SW-846 3510C	1	09/29/2008 16:30	Kevin P Love	1
00817	Water Sample Pest. Extraction	SW-846 3510C	1	09/29/2008 23:20	Olivia I Santiago	1
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 15:13	Carrie E Youtzy	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/07/2008 14:35	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	10/07/2008 14:58	Emily R Styer	10
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 5 of 5

Lancaster Laboratories Sample No. WW5481477

Group No. 1112142

MW-5 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected: 09/24/2008 12:45

Account Number: 11260

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35 Discard: 11/16/2008

L4310

Chevron

6001 Bollinger Canyon Road

San Ramon CA 94583

POR-5

06050 ICP/MS SW-846 Water SW-846 3010A modified 07326 EPH Water Extraction ECY 97-602 WA EPH

10/01/2008 09:40 10/02/2008 14:50

Denise K Conners Kelli M Barto 1

2425 New Hotland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW5481478

Group No. 1112142

MW-6 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive-Blaine, WA

Collected:09/24/2008 09:55 by ML

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

POR6-

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Pactor
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095	Diesel Range Organics	n.a.	700	80	ug/l	1
02096	Heavy Range Organics	n.a.	120	100	ug/l	1
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	6,800	250	ug/l	5
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	0.6	0.5	ug/l	1
05401	Benzene	71-43-2	13	0.5	ug/l	1
05407	Toluene	108-88-3	2	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	170	5	ug/l	10
06310	Xylene (Total)	1330-20-7	430	5	ug/l	10

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/03/2008 17:05	Diane V Do	1
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 20:31	Carrie E Youtzy	5
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/03/2008 06:08	Michael A Ziegler	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/03/2008 06:32	Michael A Ziegler	10
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 20:31	Carrie E Youtzy	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/03/2008 06:08	Michael A Ziegler	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	10/03/2008 06:32	Michael A Ziegler	10
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW5481478

Group No. 1112142

MW-6 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected:09/24/2008 09:55 by MI

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

POR6-

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW5481479

Group No. 1112142

Account Number: 11260

MW-7 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA

Collected:09/24/2008 14:25

by ML

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Chevron 6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

POR7-

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095 02096	Diesel Range Organics Heavy Range Organics	n.a. n.a.	N.D. N.D.	79 99	ug/1 ug/1	1
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	120	50	ug/l	1
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	24	0.5	ug/l	1
05401	Benzene	71-43-2	160	0.5	ug/l	1
05407	Toluene	108-88-3	3	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	7	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	3	0.5	ug/l	1

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/03/2008 15:28	Diane V Do	1
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 15:57	Carrie E Youtzy	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/03/2008 06:55	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 15:57	Carrie E Youtzy	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/03/2008 06:55	Michael A Ziegler	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW5481480

Group No. 1112142

MW-8 Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA

Collected: 09/24/2008 13:35 by ML

Submitted: 09/26/2008 09:20

Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

POR8-

				As Received		
CAT			As Raceived	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Pactor
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095	Diesel Range Organics	n.a.	N.D.	79	ug/l	1
02096	Heavy Range Organics	n.a.	N.D.	99	ug/l	1
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	N.D.	50	ug/l	1
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis						
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/03/2008 15:47	Diane V Do	1	
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 16:18	Carrie E Youtzy	1	
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/03/2008 07:19	Michael A Ziegler	1	
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 16:18	Carrie E Youtzy	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/03/2008 07:19	Michael A Ziegler	1	
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW5481481

Group No. 1112142

MW-5T Grab Water Sample

Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA

Collected: 09/24/2008 15:45 by MI

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

POR5T

CAT No.	Analysis Hame	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095 02096	Diesel Range Organics Heavy Range Organics	п.а. n.a.	N.D. N.D.	B3 100	ug/l ug/l	1
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	N.D.	50	ug/l	1
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	u g /1	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

			Analysis		Dilution
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/03/2008 16:07	Diane V Do	1
TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 16:40	Carrie E Youtzy	1
BTEX+MTBE by 8260B	SW-846 8260B	1	10/03/2008 07:43	Michael A Ziegler	1
GC VOA Water Prep	SW-846 5030B	1	10/02/2008 16:40	Carrie E Youtzy	1
GC/MS VOA Water Prep	SW-846 5030B	1	10/03/2008 07:43	Michael A Ziegler	1
Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1
	TPH by NWTPH-Dx(water) w/SiGel TPH by NWTPH-Gx waters BTEX+MTBE by 8260B GC VOA Water Prep GC/MS VOA Water Prep Extraction - DRO Water	TPH by NWTPH-Dx (water) w/SiGel modified TPH by NWTPH-Gx waters ECY 97-602 NWTPH-Gx modified BTEX+MTBE by 8260B SW-846 8260B GC VOA Water Prep SW-846 5030B GC/MS VOA Water Prep SW-846 5030B Extraction - DRO Water ECY 97-602 NWTPH-Dx	TPH by NWTPH-Dx (water)	Analysis Name Method Trial# Date and Time TPH by NWTPH-Dx (water) ECY 97-602 NWTPH-Dx 1 10/03/2008 16:07 w/sigel modified TPH by NWTPH-Gx waters ECY 97-602 NWTPH-Gx 1 10/02/2008 16:40 modified BTEX+MTBE by 8260B SW-846 8260B 1 10/03/2008 07:43 GC VOA Water Prep SW-846 5030B 1 10/02/2008 16:40 GC/MS VOA Water Prep SW-846 5030B 1 10/03/2008 07:43 Extraction - DRO Water ECY 97-602 NWTPH-Dx 1 10/02/2008 18:00	Analysis Name Method Trial# Date and Time Analyst TPH by NWTPH-Dx(water)

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.iancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW5481482

Group No. 1112142

MW-10T Grab Water Sample Facility# 91122 Job# 386756 568 Peace Portal Drive-Blaine, WA Collected: 09/25/2008 09:15

Submitted: 09/26/2008 09:20 Reported: 10/16/2008 at 14:35

Discard: 11/16/2008

Account Number: 11260

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PO10T

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Pactor
02211	TPH by NWTPH-Dx(water) w/SiGel					
02095	Diesel Range Organics	n.a.	N.D.	83	ug/l	1
02096	Heavy Range Organics	n.a.	N.D.	100	ug/l	1
08273	TPH by NWTPH-Gx waters					
01645	TPH by NWTPH-Gx waters	n.a.	₩.D.	50	ug/1	1
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/1	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02211	TPH by NWTPH-Dx(water) w/SiGel	ECY 97-602 NWTPH-Dx modified	1	10/03/2008 16:26	Diane V Do	1
08273	TPH by NWTPH-Gx waters	ECY 97-602 NWTPH-Gx modified	1	10/02/2008 17:02	Carrie E Youtzy	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	10/03/2008 08:07	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	10/02/2008 17:02	Carrie E Youtzy	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/03/2008 08:07	Michael A Ziegler	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	10/02/2008 18:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 8

Quality Control Summary

Client Name: Chevron

Group Number: 1112142

Reported: 10/16/08 at 02:35 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
AHALYBIS NAME	Result	MDL	<u>Units</u>	%REC	%REC	Limits	RPD	RPD Max
Batch number: 082730012A	Sample	number(s):	5481474,54	81477				
PCB-1016	N.D.	0.10	ug/l	86	86	69-114	0	30
PCB-1221	N.D.	0.10	ug/l				Ū	30
PCB-1232	N.D.	0.20	ug/l					
PCB-1242	N.D.	0.10	ug/l					
PCB-1248	N.D.	0.10	ug/l					
PCB-1254	N.D.	0.10	ug/l					
PCB-1260	N.D.	0.10	ug/l	76	78	34-142	3	30
		0.20	497 -	, 0	, 0	31 112	3	30
Batch number: 08273WAB026	Sample	number(s):	5481474,54	81477				
Benzo(a)anthracene	N.D.	0.010	ug/l	95	96	72-114	1	30
Chrysene	N.D.	0.010	ug/l	97	97	76-116	ō	30
Benzo(b)fluoranthene	N.D.	0.010	uq/l	92	93	69-123	i	30
Benzo(k)fluoranthene	N.D.	0.010	ug/l	88	91	72-122	3	30
Benzo(a) pyrene	N.D.	0.010	ug/l	87	89	64-115	2	30
Indeno(1,2,3-cd)pyrene	N.D.	0.010	ug/l	86	88	69-124	2	30
Dibenz (a, h) anthracene	N.D.	0.010	ug/l	86	88	71-125	2	30
		0.010	49/1	00	00	71-125	2	30
Batch number: 082746050003A	Sample :	number(s):	5481474,54	81477				
Lead	N.D.	0.050	ug/l	101		90-115		
Batch number: 082750023A	Sample	number(s):	5481473					
Diesel Range Organics	N.D.	80.	uq/1	73	76	61-106	5	20
Heavy Range Organics	N.D.	100.	ug/l	13	76	61-106	5	20
neavy range organics	N.D.	100.	ug/1					
Batch number: 082760002A	Sample	number(s):	5481474-54	81482				
Diesel Range Organics	N.D.	80.	ug/l	84	78	61-106	8	20
Heavy Range Organics	N.D.	100.	ug/l					
Batch number: 082760012A	Sample	number(s).	5481474,54	81477				
>C10 - C12 Aliphatic	N.D.	10.	uq/1	88	85	30-137	3	30
>C12 - C16 Aliphatic	N.D.	10.	ug/l	94	94	68-116	0	30
>C16 - C21 Aliphatic	N.D.	10.	ug/l	100	100	81-116	0	30
>C21 - C34 Aliphatic	N.D.	10.	ug/l	105	100	44-133	5	30
>C10 - C12 Aromatic	N.D.	10.	ug/l	80	90	30-140	12	30
>C12 - C16 Aromatic	N.D.	10.	ug/l	83	92			
>C16 - C21 Aromatic	N.D.	11.		90		30-149	10	30
>C21 - C34 Aromatic	N.D.		ug/l		100	30-148	11	30
C21 - C34 AFOMACIC	И.Б.	15.	ug/l	88	97	57-127	10	30
Batch number: 08276A20A	Sample r	number(s):	5481472-548	31482				
TPH by NWTPH-Gx waters	N.D.	50.	ug/l	104	101	75-135	2	30
Batch number: 08280A01A	Sample	number(g).	5481474,548	21477				
Methyl t-butyl ether	N.D.	1.0	uq/l	100	98	70120	2	E0.
Benzene	N.D.	1.0				70-130	2	50
Toluene	N.D.	1.0	ug/1	101	99	70-130	1	50
Ethylbenzene	N.D. N.D.		ug/l	102	100	70-130	1	50
Benilinensene	M.D.	1.0	ug/l	103	101	70-130	2	50

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 8

Quality Control Summary

Client Name: Chevron

Group Number: 1112142

Reported: 10/16/08 at 02:35 PM

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	MDL	Units	%REC	*REC	Limits	RPD	RPD Max
m,p-Xylenes	N.D.	2.0	ug/l	106	104	70-130	1	50
o-Xylene	N.D.	1.0	ug/l	102	101	70-130	2	50
C5-C6 Aliphatic Hydrocarbons	N.D.	25.0	ug/l	92				
C6-C8 Aliphatic Hydrocarbons	N.D.	25.0		97	79	70-130	14	50
			ug/l		95	70-130	2	50
C8-C10 Aliphatic Hydrocarbons	N.D.	25.0	ug/1	105	107	70-130	1	50
C8-C10 Aromatic Hydrocarbons	N.D.	25.0	ug/l	106	104	70-130	1	50
-								
Batch number: D082765AA			5481476,54	81478-548	81482			
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	86		73-119		
Benzene	N.D.	0.5	ug/l	94		78-119		
Toluene	N.D.	0.5	ug/l	99		85-115		
Ethylbenzene	N.D.	0.5	ug/l	96		82-119		
Xylene (Total)	N.D.	0.5	ug/l	97		83-113		
			•					
Batch number: W082811AA	Sample n	umber(s):	5481474,54	81477				
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	103		73-119		
Dichlorodifluoromethane	N.D.	2.	ug/l	122		45-158		
Chloromethane	N.D.	1.	ug/l	98		47-133		
Vinyl Chloride	N.D.	ī.	ug/l	89		62-128		
Bromomethane	N.D.	1.	ug/l	68		50-128		
Chloroethane	N.D.	1.	ug/l	83				
Trichlorofluoromethane	N.D.	2.				56-128		
1,1-Dichloroethene			ug/1	111		60-137		
	N.D.	0.8	ug/l	103		76-122		
Methylene Chloride	N.D.	2.	ug/l	98		85-120		
trans-1,2-Dichloroethene	N.D.	0.8	ug/l	101		83-117		
1,1-Dichloroethane	N.D.	1.	ug/l	101		83-127		
2,2-Dichloropropane	N.D.	1.	ug/1	108		74-130		
cis-1,2-Dichloroethene	N.D.	0.8	ug/l	103		84-117		
Chloroform	N.D.	0.8	ug/l	107		77-125		
Bromochloromethane	N.D.	1.	ug/l	107		83-121		
1,1,1-Trichloroethane	N.D.	0.8	ug/l	126		83-127		
Carbon Tetrachloride	N.D.	1.	ug/l	114		77-130		
1,1-Dichloropropene	N.D.	1.	ug/1	103		84-116		
Benzene	N.D.	0.5	ug/l	99		78-119		
1,2-Dichloroethane	N.D.	0.5	uq/l	114		69-135		
Trichloroethene	N.D.	1.	ug/l	101		87-117		
1,2-Dichloropropane	N.D.	1.	ug/l	95		80-117		
Dibromomethane	N.D.	1.	ug/l	104		87-117		
Bromodichloromethane	N.D.	1.	ug/l	97		83-121		
Toluene	N.D.	0.5	ug/l	97				
1,1,2-Trichloroethane						85-115		
Tetrachloroethene	N.D.	0.8	ug/l	98		86-113		
	N.D.	0.8	ug/l	99		76-118		
1,3-Dichloropropane	N.D.	1.	ug/l	97		84-119		
Dibromochloromethane	N.D.	1.	ug/l	93		78-119		
1,2-Dibromoethane	N.D.	0.5	ug/l	96		81-114		
Chlorobenzene	N.D.	0.8	ug/l	98		85-115		
1,1,1,2-Tetrachloroethane	N.D.	1.	ug/l	100		83-114		
Ethylbenzene	N.D.	0.5	ug/l	97		82-119		
m+p-Xylene	N.D.	0.5	ug/l	97		83-113		
o-Xylene	N.D.	0.5	ug/l	99		83-113		
Styrene	N.D.	1.	ug/l	95		82-111		
Bromoform	N.D.	1.	ug/l	85		69-118		
Isopropylbenzene	N.D.	1.	ug/l	99		80-113		
1,1,2,2-Tetrachloroethane	N.D.	ī.	ug/l	92		72-119		
Bromobenzene	N.D.	1.	ug/l	94		82-110		
	·		~3/ ~			02 IIV		

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 8

Quality Control Summary

Client Name: Chevron

Group Number: 1112142

Reported: 10/16/08 at 02:35 PM

Laboratory Compliance Quality Control

San Sand a Still of	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	MDL	Units	%REC	<u>%REC</u>	<u>Limits</u>	RPD	RPD Max
1,2,3-Trichloropropane	N.D.	1.	ug/l	96		78-117		
n-Propylbenzene	N.D.	1.	ug/l	93		78-119		
2-Chlorotoluene	N.D.	1.	ug/l	93		78-115		
1,3,5-Trimethylbenzene	N.D.	1.	ug/l	94		78-116		
4-Chlorotoluene	N.D.	1.	ug/l	92		80-112		
tert-Butylbenzene	N.D.	1.	ug/l	93		74-114		
1,2,4-Trimethylbenzene	N.D.	1.	ug/l	95		78-117		
sec-Butylbenzene	N.D.	1.	ug/l	93		72-120		
p-Isopropyltoluene	N.D.	1.	ug/l	94		72-118		
1,3-Dichlorobenzene	N.D.	1.	ug/l	94		81-114		
1,4-Dichlorobenzene	N.D.	1.	ug/l	92		84-116		
n-Butylbenzene	N.D.	1.	ug/l	91		75-120		
1,2-Dichlorobenzene	N.D.	1.	ug/l	94		81-112		
1,2-Dibromo-3-chloropropane	N.D.	2.	ug/l	94		65-121		
1,2,4-Trichlorobenzene	N.D.	1.	ug/l	99		65-114		
Hexachlorobutadiene	N.D.	2.	ug/l	93		62-119		
Naphthalene	N.D.	1.	ug/l	98		61-116		
1,2,3-Trichlorobenzene	N.D.	1.	ug/l	98		67-114		
Acetone	N.D.	6.	ug/l	109		40-200		
Carbon Disulfide	N.D.	1.	ug/l	92		69-119		
2-Butanone	N.D.	3.	ug/l	88		63-157		
trans-1,3-Dichloropropene	N.D.	1.	ug/l	91		79-114		
cis-1,3-Dichloropropene	N.D.	1.	ug/l	93		78-114		
4-Methyl-2-pentanone	N.D.	3.	ug/l	87		63-126		
2-Hexanone	N.D.	3.	ug/l	81		61-140		
Batch number: Z082754AA	Sample nu	mber(s)·	5481472-54	81473 548	1475			
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/1	102	14/3	73-119		
Benzene	N.D.	0.5	ug/l	96		78-119		
Toluene	N.D.	0.5	ug/l	101		85-115		
Ethylbenzene	N.D.	0.5	ug/l	97				
Xylene (Total)	N.D.	0.5		99		82-119		
waterie (rocar)	N.D.	0.5	ug/l	22		83-113		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %RBC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 082746050003A Lead	Sample 99	number(s) 102	: 5481474 75-125	,54814° 3	77 UNSP 20	K: P481567 N.D.	BKG: P481567 N.D.	0 (1)	20
Batch number: 08276A20A TPH by NWTPH-Gx waters	Sample 107	number(s)	: 5481472 63-154	-548148	32 UNSP	K: P482891			
Batch number: D082765AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	Sample 210* 92 99 95	number(s) 164* 97 100 101	: 5481476 69-127 83-128 83-127 82-129 82-130	,548147 10 5 2 6 4	78-5481 30 30 30 30 30 30	482 UNSPK:	P479876		

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681• www.lancasterlabs.com

Page 4 of 8

Quality Control Summary

Client Name: Chevron

Group Number: 1112142

Reported: 10/16/08 at 02:35 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: W082811AA	Sample	number(s)	: 5481474	.54814	77 UNSPE	K: P481572			
Methyl Tertiary Butyl Ether	112	106	69-127	5	30				
Dichlorodifluoromethane	134	135	52-192	0	30				
Chloromethane	107	107	58-157	Ö	30				
Vinyl Chloride	99	100	68-147	ĭ	30				
Bromomethane	70	73	54-140	4	30				
Chloroethane	89	94	60-140	4	30				
Trichlorofluoromethane	125	125	68-163	ō	30				
1,1-Dichloroethene	122	108	87-145	12	30				
Methylene Chloride	109	99	79-133	10	30				
trans-1,2-Dichloroethene	118	106	82-133	10	30				
1,1-Dichloroethane	116	108	85-135	7	30				
2,2-Dichloropropane	125	118	79-146	6	30				
cis-1,2-Dichloroethene	116	108	83-126	7	30				
Chloroform	121	112	83-139	8	30				
Bromochloromethane	116	113	82-129	3	30				
1,1,1-Trichloroethane	142	135	81-142	5	30				
Carbon Tetrachloride	130	123	82-149	5	30				
1,1-Dichloropropene	120	113	86-134	6	30				
Benzene	114	105	83-128	8	30				
1,2-Dichloroethane	127	119	70-143	6	30				
Trichloroethene	115	107	83-136	7	30				
1,2-Dichloropropane	105	98	83-129	7	30				
Dibromomethane	111	104	82-128	7	30				
Bromodichloromethane	108	101	80-137	7	30				
Toluene	111	100	83-127	ío	30				
1,1,2-Trichloroethane	107	99	77-125	7	30				
Tetrachloroethene	115	108	78-133	6	30				
1,3-Dichloropropane	105	96	82-121	8	30				
Dibromochloromethane	101	95	80-128	6	30				
1,2-Dibromoethane	105	97	78-120	8	30				
Chlorobenzene	109	102	83-120	7	30				
1,1,1,2-Tetrachloroethane	110	103	83-119	6	30				
Ethylbenzene	110	103	82-129	7	30				
m+p-Xylene	109	103	82-130	6	30				
o-Xylene	108	102	82-130	6	30				
Styrene	104	99	69-131	5	30				
Bromoform	93	87	64-119	8	30				
Isopropylbenzene	114	107	81-130	6	30				
1,1,2,2-Tetrachloroethane	97	92	73-121	5	30				
Bromobenzene	103	97	83-121	6	30				
1,2,3-Trichloropropane	104	97	73-125	7	30				
n-Propylbenzene	106	99	74-138	7	30				
2-Chlorotoluene	103	96	78-121	7	30				
1,3,5-Trimethylbenzene	107	101	75-132	6	30				
4-Chlorotoluene	103	96	81-123	7	30				
tert-Butylbenzene	107	103	76-128	3	30				
1,2,4-Trimethylbenzene	105	100	80-125	5	30				
sec-Butylbenzene	106	101	73-137	6	30				
p-Isopropyltoluene	105	100	74-135	5	30				
1,3-Dichlorobenzene	102	96	79-123	7	30				
1,4-Dichlorobenzene	101	97	81-122	4	30				
-, - 210111010201120110	101	J.	01-122	*	30				

^{*-} Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 5 of 8

Quality Control Summary

Client Name: Chevron

Group Number: 1112142

Reported: 10/16/08 at 02:35 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

luniania W	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	<u>%REC</u>	<u>%REC</u>	<u>Limits</u>	$\underline{\mathtt{RPD}}$	MAX	Conc	Conc	RPD	Max
n-Butylbenzene	101	96	70-141	5	30				
1,2-Dichlorobenzene	103	97	82-117	5	30				
1,2-Dibromo-3-chloropropane	100	93	60-131	8	30				
1,2,4-Trichlorobenzene	107	102	60-121	5	30				
Hexachlorobutadiene	106	103	51-135	3	30				
Naphthalene	104	98	57-125	6	30				
1,2,3-Trichlorobenzene	106	100	65-127	6	30				
Acetone	106	103	54-150	4	30				
Carbon Disulfide	107	101	69-146	6	30				
2-Butanone	93	87	57-137	7	30				
trans-1,3-Dichloropropene	101	93	77-123	8	30				
cis-1,3-Dichloropropene	103	97	72-124	7	30				
4-Methyl-2-pentanone	93	87	61-131	7	30				
2-Hexanone	87	80	60-135	8	30				
Batch number: Z082754AA	Sample	number (e)	1 . 5491470	-54914	72 5/01	475 UNSPK:	D400565		
Methyl Tertiary Butyl Ether	104	103	69-127	1		4/3 UNSPK:	P400303		
Benzene				1	30				
	101	100	83-128	Ţ	30				
Toluene	104	104	83-127	0	30				
Ethylbenzene	103	102	82-129	1	30				
Xylene (Total)	104	103	82-130	1	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PCBs in Water Batch number: 082730012A

	Tetrachloro-m-xylene	Decachlorobiphenyl	
5481474	99	79	
5481477	100	91	
Blank	96	76	
LCS	100	81	
LCSD	101	89	
Limits:	55-132	36-153	
Analysis 1	Name: PAHs in waters by SI	М	

Batch number: 08273WAB026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5481474	127	78	89	
5481477	158*	103	98	
Blank	107	105	118	
LCS	102	101	109	
LCSD	102	99	110	
Limits:	64-147	68-132	69-140	A

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681+ www.lancasterlabs.com

Page 6 of 8

Quality Control Summary

1-chlorooctadecane

Client Name: Chevron

Reported: 10/16/08 at 02:35 PM

Group Number: 1112142

Surrogate Quality Control

Analysis Name: TPH by NWTPH-Dx(water) w/SiGel Batch number: 082750023A

Orthoterphenyl

5481473	85
Blank	90
LCS	104
LCSD	107

Limits: 50-150

Analysis Name: TPH by NWTPH-Dx(water) w/SiGel

Batch number: 082760002A Orthoterphenyl

5481474	116
5481475	91
5481476	88
5481477	108
5481478	109
5481479	89
5481480	84
5481481	76
54B1482	84
Blank	107
LCS	116
LÇŞD	112

Limite:

Analysis Name: WA EPH in Water Batch number: 082760012A

Orthoterphenyl

5481474	79	69
5481477	80	83
Blank	90	95
LCS	B2	84
LCSD	91	79

Limits:

36-118

32-132

Analysis Name: TPH by NWTPH-Gx waters

Batch number: 08276A20A

Trifluorotoluene-F

5481472	80
5481473	82
5481474	108
5481475	77
5481476	80
5481477	93
5481478	91
5481479	84
5481480	83
5481481	81
5481482	79

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 7 of 8

Quality Control Summary

	~	•	2	
Client N	Name: Chevron	Group 1	Number: 1112142	
	d: 10/16/08 at 02:35	PM .		*
-			uality Control	
Blank	81	Duriogace 2	darity control	
LCS	100			
LCSD	105			
MS	99			
Limits:	63-135			
Analysis N	Name: WA - VPH waters			
Batch numb	per: 08280A01A			
	Trifluorotoluene-P	Trifluorotoluene-F		
5481474	107	126		
5481477	117	150*		
Blank	99	100		
LCS	93	96		
LCSD	91	95		
Limits:	60-140	60-140		
	Tame: BTEX+MTBE by 8260B			
Batch numb	er: D082765AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5481476	92	104	95	99
5481478	93	104	99	108
5481479	90	100	95	99
5481480	90	102	93	98
5481481	91	102	93	98
5481482	92	103	96	100
Blank	92	106	98	101
LCS	92	105	98	105
MS	93	105	97	105
MSD	94	106	98	106
Limits:	80-116	77-113	80-113	78-113
	00 110	77-113	80-113	/8-113
	ame: EPA SW846/8260 (wate:	r)		
Batch numb	er: W082811AA		_	
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5481474	97	94	94	92
5481477	98	95	95	94
Blank	100	95	92	92
LCS	99	98	95	94
MS	100	98	95	94
MSD	100	101	94	94
Limits:	90 116	77 110		
TIMICS:	80-116	77-113	80-113	78-113
	ame: BTEX+MTBE by 8260B er: Z082754AA			
Succii munibe	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5481472	96	98	95	88
5481473	94	97	95	90
5481475	95	97	92	90
Blank	96	98	94	88
LCS	94	98	95	93

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 8 of 8

Quality Control Summary

Group Number: 1112142

Client Name: Chevron Reported: 10/16/08 at 02:35 PM

Surrogate Quality Control

MS	95	98	95	95
MSD	95	100	95	93
Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	Ī	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
P	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

January 24, 2013

Mr. Nicholas Acklam Washington State Department of Ecology Toxics Cleanup Program P.O. Box 47600 Olympia, Washington 98504-7600

Subject: Third Quarter 2012 Groundwater Monitoring Report

Chevron Service Station No. 9-1122

568 Peace Portal Drive Blaine, Washington

Dear Mr. Acklam:

SAIC Energy, Environment & Infrastructure, LLC (SAIC), on behalf of Chevron Environmental Management Company (CEMC), prepared this report summarizing the third quarter 2012 groundwater monitoring event at Chevron Service Station No. 9-1122 (the site) in Blaine, Washington (Figure 1).

FIELD ACTIVITIES

Gettler-Ryan, Inc. (Gettler-Ryan) conducted the groundwater monitoring field event on September 13-14, 2012. They collected depth-to-groundwater measurements and checked for the presence of separate-phase hydrocarbons (SPH) in 12 monitoring wells on the site. SPH were not detected in any of the monitoring wells gauged.

Groundwater samples were collected from all 12 monitoring wells using low-flow purging and sampling techniques. Samples were submitted to Eurofins Lancaster Laboratories, Inc. for the following analyses:

- Total petroleum hydrocarbons (TPH) as gasoline-range organics (TPH-GRO) by Washington State Department of Ecology (Ecology) Method NWTPH-Gx;
- TPH as diesel-range organics (TPH-DRO) and TPH as heavy oil-range organics (TPH-HRO) by Ecology Method NWTPH-Dx extended with silica-gel cleanup; and
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl tertiarybutyl ether (MTBE) by United States Environmental Protection Agency (EPA) Method 8260B.

A laboratory-supplied trip blank (QA) was submitted to the laboratory and analyzed for TPH-GRO, BTEX, and MTBE to provide quality assurance. Field data sheets from

Gettler-Ryan are provided in the groundwater monitoring and sampling data package (Attachment A).

FINDINGS

During this event, groundwater elevation measurements ranged from 94.15 feet in monitoring well MW-4 to 84.86 feet in monitoring well MW-7, based on an arbitrary benchmark elevation of 100.00 feet. Groundwater elevation data from this event indicate that groundwater flows toward the east-northeast at a gradient of approximately 0.01 to 0.46 feet per foot (Figure 2). Groundwater elevations across the site decreased an average of 0.58 foot since the previous quarterly monitoring event in June 2012.

SPH were not detected in any of the monitoring wells gauged.

The following analytes were detected at concentrations exceeding their respective Model Toxics Control Act (MTCA) Method A cleanup levels:

- TPH-GRO was detected in monitoring wells MW-2 and MW-6;
- TPH-DRO was detected in monitoring wells MW-2;
- Benzene was detected in monitoring wells MW-2, MW-5, MW-6, and MW-7;
- Ethylbenzene was detected in monitoring well MW-2; and
- MTBE was detected in monitoring wells MW-2 and MW-7.

Historical groundwater elevation data and laboratory analytical results are summarized in Table 1. The laboratory analysis report is provided as Attachment B.

DISCUSSION

Groundwater monitoring and sampling results from this event are consistent with historical data for this site. Petroleum constituents continue to be detected in monitoring wells MW-2, MW-5, MW-6, and MW-7, at concentrations exceeding MTCA Method A cleanup levels. Long-term data trends suggest that contaminant concentrations in groundwater are generally stable or decreasing over time.

Gettler-Ryan will continue to perform groundwater monitoring at this site on a quarterly basis. The fourth quarter 2012 groundwater monitoring event was performed in December 2012. Results of that monitoring event will be presented in a future report.

If you have any questions or comments regarding this report, please contact the SAIC Project Manager, Russ Shropshire, at (425) 482-3323 or via email at shropshire@saic.com.

Sincerely,

SAIC Energy, Environment & Infrastructure, LLC

Andrew Lembrick

Project Geologist

Enclosures:

Figure 1 – Vicinity Map

Figure 2 – Potentiometric Map

Table 1 – Groundwater Monitoring Data and Analytical Results

Attachment A – Groundwater Monitoring and Sampling Data Package

Attachment B – Laboratory Analysis Report

cc: Mr. Eric Hetrick – Chevron Environmental Management Company 6101 Bollinger Canyon Road, San Ramon, CA 94583

Mr. Michael Hill – Michael Hill's, Inc. P.O. Box 489, Blaine, WA 98231

Mr. Paul Grabau – Farrallon Consulting 1201 Cornwall Avenue, Suite 105, Bellingham, WA 98225

Mr. Ken Imus – Jacaranda Land and Development Corporation 1305 11th Street, Office No. 201, Bellingham, WA 98225

Project File

REPORT LIMITATIONS

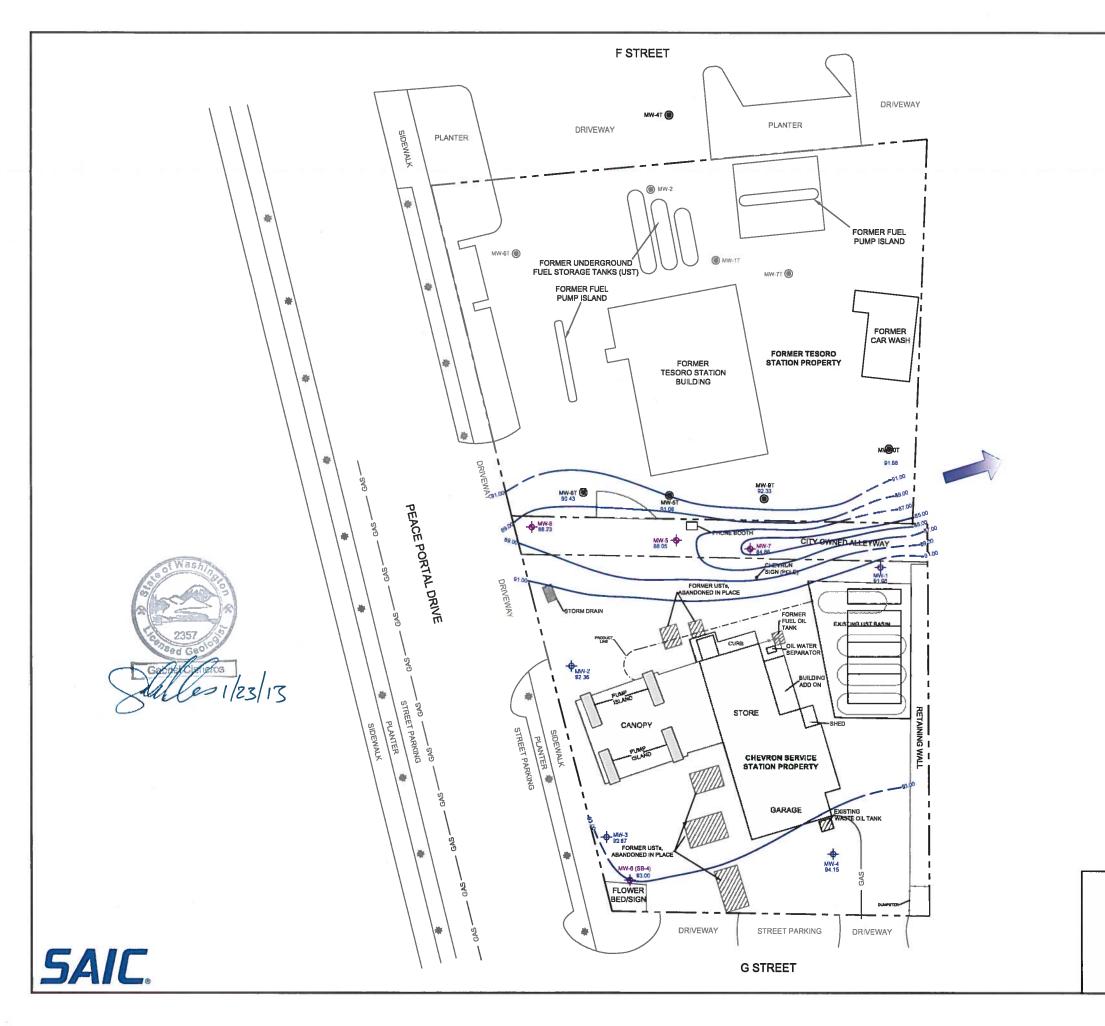
This technical document was prepared on behalf of Chevron and is intended for its sole use and for use by the local, state or federal regulatory agency that the technical document was sent to by SAIC. Any other person or entity obtaining, using, or relying on this technical document hereby acknowledges that they do so at their own risk, and that SAIC shall have no responsibility or liability for the consequences thereof.

Site history and background information provided in this technical document are based on sources that may include interviews with environmental regulatory agencies and property management personnel and a review of acquired environmental regulatory agency documents and property information obtained from CEMC and others. SAIC has not made, nor has it been asked to make, any independent investigation concerning the accuracy, reliability, or completeness of such information beyond that described in this technical document.

Recognizing reasonable limits of time and cost, this technical document cannot wholly eliminate uncertainty regarding the vertical and lateral extent of impacted environmental media.

Opinions and recommendations presented in this technical document apply only to site conditions and features as they existed at the time of SAIC's site visits or site work and cannot be applied to conditions and features of which SAIC is unaware and has not had the opportunity to evaluate.

All sources of information on which SAIC has relied in making its conclusions (including direct field observations) are identified by reference in this technical document or in appendices attached to this technical document. Any information not listed by reference or in appendices has not been evaluated or relied upon by SAIC in the context of this technical document. The conclusions, therefore, represent our professional opinion based on the identified sources of information.


Maps Provided by Seattle.gov

Chevron Service Station No. 9-1122 568 Peace Portal Drive Blaine, Washington FIGURE 1 Vicinity Map

FILE NAME: 91122 Vicinity Map.dwg ATE:

10/31/2012

LEGEND

Groundwater Monitoring Well Installed by Delta Environmental, Inc. (2001)

Groundwater Monitoring Well Installed by SAIC (2008)

MW-8T • Groundwater Monitoring Well Located on Former Tesoro

Decommissioned Groundwater Monitoring Well Located on Former Tesoro Property

92.56 Groundwater Elevation in Feet

Groundwater Elevation Contour at a 2.00 Foot Interval 90.00 ---(Dashed Where Inferred)

Approximate Groundwater Flow Direction with a Gradient of 0.01 to 0.46

Property Line

Chevron Service Station No. 9-1122 568 Peace Portal Drive Blaine, Washington

FIGURE 2 Potentiometric Map September 13-14, 2012

DATE:

FILE NAME:

91122 Site Map.dwg

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive Blaine, Washington

W II ID '		TIO C2	DEN	CIVE	1 1	Concentration	is reported in	μg/L		77.1	7D 4 1	<u> </u>	
Well ID/	Purge	TOC ²	DTW	GWE	TDII DDG	TRUE HEAD	TOTAL CID O	D	7 7. 1	Ethyl-	Total	MEDE	D. T. 1
Date CHEVRON SEI	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
MW-1	RVICE SI.	ATION NO). Y-1122										
5/3/01		100.00	8.34	91.66									
6/19/01		100.00	9.42	90.58	<250	<750	192	23.5	6.46	2.49	5.80	<5.00/<5.00 ³	<0.00100 ⁴
8/19/01		100.00	11.37	88.63	<250	<500	<50.0	1.06	0.624	< 0.500	<1.00	<1.00/<5.00 ³	<0.00100
11/28/01		100.00	9.24	90.76	<250	<500	190	46.9	8.09	0.924	2.94	$1.96/<5.00^3$	
2/18/02		100.00	7.50	92.50	<250	<750	570	20	4.2	4.6	3.4	<2.5/<2 ³	
5/20/02	NP	100.00	9.30	90.70	<250	<750	1,000	23	6.5	10	4.2	<2.5	
8/16/02	NP	100.00	11.88	88.12	<250	<250	100	14	2.1	1.0	<1.5	<2.5	
11/17/02	NP	100.00	11.95	88.05	<250	<250	<50	1.0	< 0.50	< 0.50	<1.5	<2.5	
2/7/03	NP	100.00	8.49	91.51	<250	<750	95	4.1	< 0.50	< 0.50	<1.5	<2.5	
5/21/03	NP	100.00	8.68	91.32	<250	<250	600	7.7	1.1	2.1	<1.5	<2.5	
11/15/03	NP	100.00	9.78	90.22	<250	<250	<50	1.9	<0.5	<0.5	<1.5	<2.5	
2/7/04	NP	100.00	6.91	93.09	<250	<250	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
5/8/04	NP	100.00	8.72	91.28	<250	<250	430	16	1.3	2.4	1.8	$3.0/<2^3$	
8/14/04	NP	100.00	11.18	88.82	<250	<250	<50	14	0.8	0.6	<1.5	<2.5	
11/26/04	NP	100.00	6.68	93.32	<250	<250	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
2/24/05	NP	100.00	6.46	93.54	<250	<250	<50	17	0.5	<0.5	2.9	<2.5	
6/10/05	NP	100.00	9.26	90.74	<250	<250	110	22	0.9	0.5	1.7	<2.5	
8/2/05	NP	100.00	10.53	89.47	<250	<250	<50	1.6	< 0.5	< 0.5	<1.5	<2.5	
10/15/05	NP	100.00	11.81	88.19	<80	<100	<48	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
2/11/06	NP	100.00	6.31	93.69	<82	<100	<48	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
8/2/07	NP	100.00	8.98	91.02	520	<98	<50	4.2	< 0.5	< 0.5	<1.5		
9/24-25/08	LFP	100.00	8.63	91.37	<80	<100	120	1	< 0.5	< 0.5	< 0.5	< 0.5	
12/4-5/08	LFP	100.00	6.37	93.63	<32	<75	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/6/09	LFP	100.00	6.29	93.71	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18/09	LFP	100.00	8.10	91.90	46	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/25/09	LFP	100.00	9.77	90.23	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
11/23-24/09	LFP	100.00	6.18	93.82	<29	<67	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/16/10	LFP	100.00	6.35	93.65	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/28-29/10	LFP	100.00	7.21	92.79	48	84	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/14/10	LFP	100.00	7.71	92.29	<29	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/08/10	LFP	100.00	6.82	93.18	32	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/02/11	LFP	100.00	5.90	94.10	84	250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ **CHEVRON SERVICE STATION NO. 9-1122**

568 Peace Portal Drive Blaine, Washington

						Concentration	is reported in	μg/L					
Well ID/	Purge	TOC^2	DTW	GWE						Ethyl-	Total		
Date	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
MW-1 (cont)			•										
06/14/11	LFP	100.00	6.55	93.45	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11	LFP	100.00	6.10	93.90	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/02/11	LFP	100.00	6.80	93.20	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/01-02/12	LFP	100.00	5.75	94.25	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18-19/2012	LFP	100.00	6.50	93.50	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13-14/2012	LFP	100.00	8.92	91.08	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
MW-2													
05/03/01		97.01	3.72	93.29									
06/19/01		97.01	4.04	92.97	791	< 750	40,200	2,110	1,160	777	3,200	$206/<5.00^3$	< 0.001004
08/19/01		97.01	4.15	92.86	<250	< 500	29,300	3,490	1,010	1,460	4,790	$245/<5.00^3$	
11/28/01		97.01	4.42	92.59	513	< 500	23,800	3,490	334	1,560	3,720	192/78.7 ³	
11/28/01	R											/ 97.9 ³	
2/18/02		97.01	3.94	93.07	1,800	< 750	25,000	2,700	240	1,500	3,400	98/110 ³	
5/20/02	NP	97.01	4.28	92.73	1,600	<1,000	25,000	1,800	110	1,400	2,900	$72/50^3$	
8/16/02	NP	97.01	4.19	92.82	2,400	<250	25,000	2,000	89	1,200	2,500	$140/80^3$	
11/17/02	NP	97.01	5.39	91.62	1,500	<250	24,000	2,600	130	1,300	2,700	<100	
2/7/03	NP	97.01	5.39	91.62	1,700	< 750	27,000	2,700	130	1,500	2,900	< 200	
5/21/03	NP	97.01	5.65	91.36	1,300	<250	28,000	2,300	93	1,400	2,600	$150/90^3$	
11/15/03	NP	97.01	3.31	93.70	1,400	<250	25,000	2,200	110	1,300	2,700	$240/82^3$	
2/7/04	NP	97.01	3.56	93.45	1,500	<250	24,000	2,700	130	1,600	2,900	$220/66^3$	
5/8/04	NP	97.01	3.96	93.05	1,800	260	22,000	1,700	69	1,400	2,600	190/61 ³	
8/14/04	NP	97.01	4.30	92.71	1,700	330	21,000	2,000	74	1,400	2,600	< 200	
11/26/04	NP	97.01	3.98	93.03	1,100	<490	21,000	2,400	82	1,200	2,100	<2.5	
2/24/05	NP	97.01	3.63	93.38	570	<250	23,000	1,800	87	1,500	2,600	<100	
6/10/05	NP	97.01	3.52	93.49	1,800	<250	21,000	1,500	58	1,200	2,000	<100	
8/2/05	NP	97.01	4.14	92.87	1,600	310	23,000	1,700	67	1,300	2,400	130	
10/15/05	NP	97.01	4.26	92.75	1,100	< 500	19,000	2,300	63	1,400	2,000	< 50	
2/11/06	NP	97.01	3.72	93.29	1,200	<100	22,000	2,100	84	1,500	2,300	< 200	
8/2/07	NP	97.01	3.69	93.32	1,500	<480	15,000	1,400	52	1,400	1,200		
9/24-25/08	LFP	97.02	3.92	93.10	1,200	< 500	14,000	1,700	57	1,600	615	54	4.5
12/4-5/08	LFP	97.02	4.11	92.91	1,000	<340	14,000	1,500	52	1,400	460	36	
3/6/09	LFP	97.02	3.88	93.14	1,000	<140	13,000	1,400	47	1,700	450	32	
6/18/09	LFP	97.02	3.79	93.23	630	<140	13,000	1,100	38	1,400	530	31	
9/25/09	LFP	97.02	4.23	92.79	1,300	<340	11,000	960	40	1,100	330	32	

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive Blaine, Washington

W-ILID/	I n I	TOC^2	DTW	CIVE	1	Concentration	s reported in	μg/L	T.	E41 1	/D 4 1	T 1	
Well ID/ Date	Purge Method		DTW	GWE	TDII DDA	TRIL LIDO	TPH-GRO	Dammana	Toluene	Ethyl-	Total	MTBE	D. Land
MW-2 (cont)	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	1 oluene	benzene	Xylenes	MIBE	D. Lead
11/23-24/09	LFP	97.02	2.91	94.11	710	<140	12,000	1,300	40	1,200	300	36	
3/16/10	LFP	97.02		93.61	760	140	9,600	870	34			21	
			3.41							1,400	340		
6/28-29/10	LFP	97.02	3.40	93.62	810	<140	10,000	760	27	1,100	310	27	
09/14/10	LFP	97.02	3.84	93.18	800	440	10,000	740	34	1,000	240	25	
12/08/10	LFP	97.02	4.11	92.91	840	<360	10,000	1,300	44	1,500	310	31	
03/02/11	LFP	97.02	3.66	93.36	960	<350	11,000	880	32	1,000	230	22	
06/14/11	LFP	97.02	3.70	93.32	890	160	9,400	800	36	1,000	220	20	
09/13/11	LFP	97.02	3.95	93.07	240	<68	11,000	980	36	1,400	210	23	
12/02/11	LFP	97.02	3.60	93.42	580	<350	10,000	1,200	47	1,600	240	27	
03/1-2/12	LFP	97.02	2.80	94.22	450	<66	9,100	810	33	1,100	200	22	
6/18-19/2012	LFP	97.02	4.46	92.56	590	<68	9,600	860	31	1,400	250	18	
09/13-14/2012	LFP	97.02	4.66	92.36	660	<68	9,600	870	33	1,300	140	20	
MW-3	1		1							1	1	 	
5/3/01		98.29	4.37	93.92									
6/19/01		98.29	4.58	93.71	<250	< 750	2,290	< 0.500	0.550	3.25	6.15	<5.00/<5.00 ³	< 0.001004
8/19/01		98.29	5.03	93.26	<250	< 500	383	< 0.500	< 0.500	< 0.500	3.58	<1.00/<5.00 ³	
11/28/01		98.29	4.17	94.12	<250	< 500	343	< 0.500	< 0.500	< 0.500	4.31	$<1.00/<5.00^3$	
2/18/02		98.29	4.49	93.80	350	< 750	510	< 0.50	< 0.50	0.69	<1.5	$<2.5/<2^3$	
5/20/02	NP	98.29	4.65	93.64	310	< 750	760	< 0.50	1.0	2.6	<1.5	<2.5	
8/16/02	NP	98.29	5.08	93.21	280	<250	220	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
11/17/02	NP	98.29	4.59	93.70	<250	<250	310	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
2/7/03	NP	98.29	4.38	93.91	<250	< 750	350	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
5/21/03	NP	98.29	4.31	93.98	<250	<250	400	< 0.5	< 0.5	< 0.5	1.7	<2.5	
11/15/03	NP	98.29	4.53	93.76	260	<250	240	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
2/7/04	NP	98.29	4.11	94.18	250	<250	360	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
5/8/04	NP	98.29	4.75	93.54	280	<250	110	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
8/14/04	NP	98.29	5.06	93.23	270	<250	100	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
11/26/04	NP	98.29	3.76	94.53	<250	<250	560	< 0.5	< 0.5	<1.0	<1.5	<2.5	
2/24/05	NP	98.29	4.34	93.95	<250	<250	330	< 0.5	< 0.5	<1.0	<3.0	<2.5	
6/10/05	NP	98.29	4.31	93.98	<250	<250	250	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
8/2/05	NP	98.29	4.98	93.31	260	<250	140	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
10/15/05	NP	98.29	4.06	94.23	200	200	250	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
2/11/06	NP	98.29	4.22	94.07	110	<100	390	<0.5	<0.5	< 0.5	<2.0	<2.5	
8/2/07	NP	98.29	4.73	93.56	740	<97	200	<0.5	<2.0	<0.5	<1.5		

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive Blaine, Washington

Well Date Method *** ** *** /	T 1	TD 0 02	DOWN	CTT TO		Concentration	is reported in	μg/L				1		
NW-3 (cont) 924-25-08 LFP 98.31 4.89 93.42 99 <99 <350 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0		_				TDII DDG	TRUE LIDO	TOUL CDG	.	7 7. 1			A CODE	D. T. 1
9/24-25/08 LFP 98.31 4.89 93.42 99 <99 350 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		Method	(ft.)	(ft.)	(ft.)	TPH-DRO	ТРН-НКО	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
12/45/08 LFP 98.31 4.22 94.09 92 <68 460 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	` /		00.01		1									
3/609 LFP 98.31 4.33 93.98 120 120 500 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <														
6/18/09														
9/25/09 LFP 98.31 4.97 93.34 100 <69 190 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5														
11/23-24/09 LFP 98.31 3.80 94.51 62 <68 350 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.														
3/16/10 LFP 98.31 4.01 94.30 100 88 390 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5														
6/28-29/10 LFP														
9/14/10 LFP														
12/8/10 LFP 98.31 4.25 94.06 110 90 340 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	6/28-29/10	LFP		4.74	93.57				< 0.5		< 0.5	< 0.5	< 0.5	
3/2/11 LFP 98.31 4.22 94.09 100 <69 340 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	9/14/10	LFP	98.31	4.10	94.21	80		86	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Color	12/8/10	LFP	98.31	4.25	94.06	110	90	340	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11 LFP 98.31 5.10 93.21 33 <68 250 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	3/2/11	LFP	98.31	4.22	94.09	100	<69	340	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/02/11 LFP 98.31 4.30 94.01 33 <69 180 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	6/14/11	LFP	98.31	4.60	93.71	170	<68	500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/1-2/2012 LFP 98.31 4.10 94.21 30 <67 310 3 <0.5 5 1 <0.5	09/13/11	LFP	98.31	5.10	93.21	33	<68	250	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Color Colo	12/02/11	LFP	98.31	4.30	94.01	33	<69	180	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13-14/2012 LFP 98.31 5.44 92.87 <29 <69 150 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 MW-4	03/1-2/2012	LFP	98.31	4.10	94.21	30	<67	310	3	< 0.5	5	1	< 0.5	
MW-4 5/3/01 99.81 4.65 95.16	6/18-19/2012	LFP	98.31	4.30	94.01	34	< 70	180	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09/13-14/2012	LFP	98.31	5.44	92.87	<29	<69	150	< 0.5	< 0.5	0.5	< 0.5	< 0.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-4													
8/19/01 99.81 6.01 93.80 475 <500 <50.0 <0.500 <0.500 <1.00 <1.00/<5.00³	5/3/01		99.81	4.65	95.16									
11/28/01 99.81 4.24 95.57 <250	6/19/01		99.81	5.14	94.67	<250	< 750	< 50.0	< 0.500	< 0.500	< 0.500	<1.00	$<5.00/<5.00^3$	< 0.001004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8/19/01		99.81	6.01	93.80	475	< 500	< 50.0	< 0.500	< 0.500	< 0.500	<1.00	<1.00/<5.00 ³	
5/20/02 99.81 5.05 94.76	11/28/01		99.81	4.24	95.57	<250	< 500	< 50.0	< 0.500	< 0.500	< 0.500	<1.00	<1.00/<5.00 ³	
5/20/02 99.81 5.05 94.76	2/18/02		99.81	3.98	95.83	<250	< 750	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<2 ³	
11/17/02 99.81 5.22 94.59 <td< td=""><td>5/20/02</td><td></td><td>99.81</td><td>5.05</td><td>94.76</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5/20/02		99.81	5.05	94.76									
2/7/03 99.81 4.86 94.95 -	8/16/02		99.81	6.01	93.80									
5/21/03 99.81 4.78 95.03			99.81		94.59									
5/21/03 99.81 4.78 95.03	2/7/03		99.81	4.86	94.95									
11/15/03 99.81 5.02 94.79 <td< td=""><td>5/21/03</td><td></td><td>99.81</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5/21/03		99.81											
2/7/04 99.81 4.62 95.19 -														
5/8/04 99.81 5.19 94.62 -														
8/14/04 99.81 5.91 93.90														
2/24/05 99.81 4.85 94.96														

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ **CHEVRON SERVICE STATION NO. 9-1122**

568 Peace Portal Drive Blaine, Washington

						Concentration	is reported in	μg/L					
Well ID/	Purge	TOC^2	DTW	GWE						Ethyl-	Total		
Date	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
MW-4 (cont)								,					
6/10/05		99.81	4.81	95.00									
8/2/05		99.81	5.79	94.02									
10/15/05		99.81	4.52	95.29									
2/11/06		99.81	4.69	95.12									
8/2/07		99.81	5.22	94.59	430	<97	< 50	< 0.5	< 0.5	< 0.5	<1.5		
9/24-25/08	LFP	100.15	5.37	94.78	<79	<99	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/4-5/08	LFP	100.15	4.04	96.11	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/6/09	LFP	100.15	4.36	95.79	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18/09	LFP	100.15	5.31	94.84	46	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/25/09	LFP	100.15	5.59	94.56	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
11/23-24/09	LFP	100.15	3.35	96.80	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/16/10	LFP	100.15	3.91	96.24	65	320	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/28-29/10	LFP	100.15	5.06	95.09	44	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/14/10	LFP	100.15	3.56	96.59	<29	120	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/8/10	LFP	100.15	3.95	96.20	270	810	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/2/11	LFP	100.15	3.85	96.30	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/14/11	LFP	100.15	4.80	95.35	98	310	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11	LFP	100.15	5.80	94.35	29	250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/02/11	LFP	100.15	4.50	95.65	<30	<71	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/1-2/12	LFP	100.15	3.55	96.60	<28	<66	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18-19/2012	LFP	100.15	4.60	95.55	<30	<71	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/13-14/2012	LFP	100.15	6.00	94.15	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
MW-5				_					_		_		
09/24-25/08	LFP	97.33	8.94	88.39	1,100	<99	9,600	380	24	320	940	13	4.6
12/04-05/08	LFP	97.33	8.43	88.90	920	<69	13,000	440	36	550	1,400	10	
3/6/09	LFP	97.33	8.58	88.75	730	<69	11,000	380	15	490	900	9	
6/18/09	LFP	97.33	8.87	88.46	750	<69	13,000	420	20	560	1,100	10	
9/25/09	LFP	97.33	8.88	88.45			5,800	240	6	360	500	6	
11/23-24/09	LFP	97.33	8.21	89.12	670	69	11,000	330	20	620	1,400	7	
3/16/10	LFP	97.33	8.68	88.65	370	92	5,900	220	12	370	590	8	
06/28-29/10	LFP	97.33	8.87	88.46	630	<68	11,000	320	12	620	740	8	
9/14/10	LFP	97.33	8.57	88.76	410	<140	4,300	180	4	300	40	4	
12/8/10	LFP	97.33	8.76	88.57	320	<69	4,200	210	3	370	10	3	
3/2/11	LFP	97.33	8.74	88.59	280	130	4,000	180	6	290	16	5	

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive Blaine, Washington

						Concentration	is reported in	μg/L					
Well ID/	Purge	TOC^2	DTW	GWE						Ethyl-	Total		
Date	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
MW-5 (cont)				•									
6/14/11	LFP	97.33	8.70	88.63	420	<68	5,100	320	9	370	70	8	
09/13/11	LFP	97.33	9.15	88.18	<29	<68	2,000	180	2	160	8	6	
12/02/11	LFP	97.33	8.75	88.58	94	<68	2,100	200	2	200	3	3	
03/1-2/2012	LFP	97.33	8.80	88.53	60	<69	680	56	0.7	29	1	3	
6/18-19/2012	LFP	97.33	8.74	88.59	91	<69	1,900	120	2	170	3	2	
9/13-14/2012	LFP	97.33	9.28	88.05	81	<67	580	110	0.6	78	3	4	
MW-6													
09/24-25/08	LFP	99.01	5.55	93.46	700	120	6,800	13	2	170	430	0.6	
12/04-05/08	LFP	99.01	4.85	94.16	730	<140	26,000	25	<3	830	2,500	<3	
3/6/09	LFP	99.01	5.00	94.01	670	<69	17,000	15	2	330	960	<1	
6/18/09	LFP	99.01	5.57	93.44	650	<69	5,300	6	1	84	250	< 0.5	
9/25/09	LFP	99.01	5.65	93.36	680	400	4,700	10	1	120	230	< 0.5	
11/23-24/09	LFP	99.01	4.61	94.40	730	<140	31,000	31	3	800	2,600	0.6	
3/16/10	LFP	99.01	4.82	94.19	670	<330	14,000	19	2	510	1,500	<1	
06/28-29/10	LFP	99.01	5.35	93.66	640	100	6,700	10	1	170	340	< 0.5	
9/14/10	LFP	99.01	4.79	94.22	4,100	<1,700	23,000	28	2	730	2,300	<1	
12/8/10	LFP	99.01	4.92	94.09	750	120	18,000	16	<3	440	1,300	<3	
3/2/11	LFP	99.01	4.90	94.11	1,200	260	13,000	14	1	280	680	< 0.5	
6/14/11	LFP	99.01	5.22	93.79	450	<69	7,600	13	1	150	320	< 0.5	
09/13/11	LFP	99.01	5.80	93.21	180	<67	3,400	10	0.7	110	130	< 0.5	
12/02/11	LFP	99.01	4.90	94.11	1,600	<340	13,000	15	<3	410	910	<3	
03/1-2/2012	LFP	99.01	4.80	94.21	370	<68	12,000	13	<3	340	800	<3	
6/18-19/2012	LFP	99.01	4.92	94.09	2,200	210	11,000	13	1	390	680	<1	
9/13-14/2012	LFP	99.01	6.01	93.00	140	<69	2,500	10	1	84	110	< 0.5	
MW-7													
09/24-25/08	LFP	98.21	13.34	84.87	<79	<99	120	160	3	7	3	24	
12/04-05/08	LFP	98.21	13.32	84.89	42	<68	51	160	1	7	< 0.5	15	
3/6/09	LFP	98.21	13.33	84.88	51	<68	170	220	3	19	5	19	
6/18/09	LFP	98.21	13.29	84.92	38	<69	180	510	3	23	8	40	
9/25/09	LFP	98.21	13.35	84.86	<29	<68	140	500	3	4	3	45	
11/23-24/09	LFP	98.21	13.27	84.94	<29	<68	150	700	7	12	12	55	
3/16/10	LFP	98.21	13.28	84.93	48	<66	250	790	7	25	22	48	
06/28-29/10	LFP	98.21	13.31	84.90	41	<68	95	380	1	6	3	36	

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive Blaine, Washington

Well ID/	Purge	TOC^2	DTW	GWE		Concentration	в герописи п	<u> </u>		Ethyl-	Total		
Date	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
MW-7 (cont)		(/	(/	(/									
9/14/10	LFP	98.22	13.21	85.01	37	69	< 50	190	1	1	< 0.5	26	
12/8/10	LFP	98.22	13.30	84.92	54	170	56	350	2	0.9	4	28	
3/2/11	LFP	98.22	13.27	84.95	96	81	1,000	740	13	100	69	45	
6/14/11	LFP	98.22	13.17	85.05	33	<73	220	500	6	23	13	35	
09/13/11	LFP	98.22	13.30	84.92	<30	<69	< 50	170	1	1	1	20	
12/02/11	LFP	98.22	13.30	84.92	97	<69	160	310	3	11	7	19	
03/1-2/2012	LFP	98.22	13.20	85.02	57	< 70	610	300	3	39	8	18	
6/18-19/2012	LFP	98.22	13.20	85.02	33	1,100	240	340	3	18	9	21	
9/13-14/2012	LFP	98.22	13.36	84.86	<29	<67	57	170	1	0.7	2	21	
MW-8													
09/24-25/08	LFP	95.62	5.74	89.88	<79	<99	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/04-05/08	LFP	95.62	5.50	90.12	40	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/6/09	LFP	95.62	5.62	90.00	56	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18/09	LFP	95.62	6.13	89.49	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/25/09	LFP	95.62	6.12	89.50	57	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
11/23-24/09	LFP	95.62	5.48	90.14	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/16/10	LFP	95.62	5.62	90.00	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/28-29/10	LFP	95.62	6.13	89.49	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/14/10	LFP	95.63	5.57	90.06	<29	210	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/8/10	LFP	95.63	5.48	90.15	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/2/11	LFP	95.63	5.61	90.02	<30	180	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/14/11	LFP	95.63	6.00	89.63	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11	LFP	95.63	6.45	89.18	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/02/11	LFP	95.63	5.75	89.88	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/1-2/12	LFP	95.63	5.65	89.98	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18-19/2012	LFP	95.63	5.85	89.78	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/13-14/2012	LFP	95.63	7.40	88.23	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
FORMER TES	ORO SER	VICE STAT	TION (IMUS	PROPERTY)								
MW-4T		-							1				
11/23-24/09		92.18	3.93	88.25									

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive

Blaine, Washington Concentrations reported in µg/L

						Concentration	s reported in	μg/L					
Well ID/	Purge	TOC^2	DTW	GWE						Ethyl-	Total		
Date	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
MW-5T	•	•									· · · · · · · · · · · · · · · · · · ·		
09/24-25/08	LFP	25.82	3.62	22.20	<83	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
11/23-24/09	LFP	96.16	4.05	92.11	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/16/10	LFP	96.16	4.34	91.82	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/28-29/10	LFP	96.16	4.64	91.52	210	170	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/14/10	LFP	96.16	4.23	91.93	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/08/10	LFP	96.16	4.10	92.06	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/02/11	LFP	96.16	4.17	91.99	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/14/11	LFP	96.16	4.45	91.71	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11	LFP	96.16	4.80	91.36	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/02/11	LFP	96.16	4.30	91.86	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/1-2/2012	LFP	96.16	4.30	91.86	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18-19/2012	LFP	96.16	4.28	91.88	2,200	8,300	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/13-14/2012	LFP	96.16	5.08	91.08	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
MW-8T													
09/24-25/08	PER		5.96		NOT SAMPI	LED DUE TO	INSUFFICIEN	NT WATER					
11/23-24/09	LFP	95.58	3.41	92.17	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/16/10	LFP	95.58	3.85	91.73	<31	<73	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/28-29/10	LFP	95.58	4.71	90.87	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/14/10	LFP	95.58	2.78	92.80	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/08/10	LFP	95.58	3.68	91.90	<28	<66	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/02/11	LFP	95.58	3.83	91.75	35	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/14/11	LFP	95.58	4.62	90.96	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11	LFP	95.58	5.00	90.58	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/02/11	LFP	95.58	3.90	91.68	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/1-2/12	LFP	95.58	3.95	91.63	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18-19/2012	LFP	95.58	4.20	91.38	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/13-14/2012	LFP	95.58	5.15	90.43	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
MW-9T													
09/24-25/08	PER		4.54		NOT SAMPI	ED DUE TO	INSUFFICIE	NT WATER					
11/23-24/09	PER	96.63	2.72	93.91			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/16/10	LFP	96.63	3.08	93.55	<29	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/28-29/10	LFP	96.63	3.30	93.33	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/14/10	LFP	96.63	4.00	92.63	30	<66	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/08/10	LFP	96.63	3.21	93.42	51	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/02/11	LFP	96.63	2.81	93.82	<30	<71	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive Blaine, Washington

					(Concentration	is reported in	μg/L					
Well ID/	Purge	TOC^2	DTW	GWE						Ethyl-	Total		
Date	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
MW-9T (cont)											-		
06/14/11	LFP	96.63	3.45	93.18	<31	<73	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11	LFP	96.63	3.45	93.18	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/02/11	LFP	96.63	2.95	93.68	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/1-2/12	LFP	96.63	3.45	93.18	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18-19/2012	LFP	96.63	3.40	93.23	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/13-14/2012	LFP	96.63	4.30	92.33	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
MW-10T				•									
09/24-25/08	PER		4.35		<83	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-1
11/23-24/09	LFP	97.24	5.36	91.88	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/16/10	LFP	97.24	5.55	91.69	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/28-29/10	LFP	97.24	5.74	91.50	41	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/14/10	LFP	97.24	5.51	91.73	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/08/10	LFP	97.24	5.52	91.72	<30	<71	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/02/11	LFP	97.24	5.61	91.63	<30	<71	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/14/11	LFP	97.24	5.63	91.61	<29	<68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11	LFP	97.24	6.05	91.19	<30	< 70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
MW-10T (cont													
12/02/11	LFP	97.24	5.65	91.59	<31	<73	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/1-2/12	LFP	97.24	5.70	91.54	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18-19/2012	LFP	97.24	5.72	91.52	<29	<67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/13-14/2012	LFP	97.24	5.36	91.88	<30	<69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRIP BLANK													
6/19/01							< 50.0	< 0.500	< 0.500	< 0.500	<1.00	< 5.00	
8/19/01							< 50.0	< 0.500	< 0.500	< 0.500	<1.00	<1.00	
11/28/01							< 50.0	< 0.500	< 0.500	< 0.500	<1.00	<1.00	
2/18/02							< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
5/20/02							< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
QA													
8/16/02							< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
11/17/02							<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
2/7/03							<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
5/21/03							<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/15/03							<50	<0.5	<0.5	<0.5	<1.5	<2.5	
							<50 <50						
2/7/04							<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive Blaine, Washington

Well ID/	Purge	TOC^2	DTW	GWE						Ethyl-	Total		
Date	Method	(ft.)	(ft.)	(ft.)	TPH-DRO	TPH-HRO	TPH-GRO	Benzene	Toluene	benzene	Xylenes	MTBE	D. Lead
QA (cont)													
5/8/04							< 50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
8/14/04							< 50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
11/26/04							< 50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
2/24/05							< 50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
6/10/05							< 50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
8/2/05							< 50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
10/15/05							<48	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
2/11/06							<48	< 0.5	< 0.5	< 0.5	<1.5	<2.5	
8/2/07							< 50	< 0.5	< 0.5	< 0.5	<1.5		
09/24-25/08							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/04-05/08							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/6/09							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18/09							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/25/09							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
11/23-24/09							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
3/16/10							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/28-29/10							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/14/10							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/08/10							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/02/11							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
06/14/11							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
09/13/11							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
12/02/11							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
03/1-2/12							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
6/18-19/2012							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
9/13-14/2012							< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	S	tandard La	boratory Repo	orting Limits:			50	0.5	0.5	0.5	0.5	0.5	
		MTCA I	Method A Cle	anup Levels:	500	500	800/1,000	5	1,000	700	1,000	20	
		-	Curr	ent Method ⁵ :	NWTPH-Dx	x + Extended ⁶		N	WTPH-Gx ar	nd USEPA 82	60		USEPA 6020

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS¹ CHEVRON SERVICE STATION NO. 9-1122

568 Peace Portal Drive

Blaine, Washington

Concentrations reported in $\mu g/L$

Abbreviations:

D. Lead = Dissolved Lead PER = Peristaltic pump

DTW = Depth to Water QA = Quality Assurance/Trip Blank

(ft.) = Feet R = Re-analysis

GWE = Groundwater Elevation SAIC = SAIC Energy, Environment & Infrastructure, LLC

LFP = Low Flow Purge TOC = Top of Casing

MTBE = Methyl Tertiary Butyl Ether

TPH = Total Petroleum Hydrocarbons

MTCA = Model Toxics Control Act

TPH-DRO = TPH as diesel-range organics

NP = No purge

TPH-GRO = TPH as gasoline-range organics

TPH-HRO = TPH as heavy oil-range organics

USEPA = United States Environmental Protection Agency

μg/L = Micrograms per liter-- = Not Measured/Not Analyzed

Notes:

- 1 Analytical results in bold font indicate concentrations exceed MTCA Method A cleanup levels.
- 2 TOC elevations have been surveyed in feet relative to an arbitrary datum.
- 3 MTBE by USEPA Method 8021 and confirmed by 8260.
- 4 Laboratory report indicates the sample was laboratory filtered and not in the field as required by the methodology.
- 5 Laboratory analytical methods for historical data may not be consistent with list of current analytical methods. When necessary, consult original laboratory reports to verify methods used.
- 6 Analyzed with silica-gel cleanup.

TRANSMITTAL

September 19, 2012 G-R #386756

TO:

Mr. Russell Shropshire

SAIC

18912 North Creek Parkway, Suite 101

Bothell, Washington 98011

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J

Dublin, California 94568

RE: **Chevron Service Station**

#9-1122

568 Peace Portal Drive Blaine, Washington

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package Third Quarter Event of September 13 and 14, 2012

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/9-1122

GETTLER-RYAN INC.

rum: #	Describe K	UMS @ site	Condition	escription, cor Labeling i.e., well box Manufacture	Contents/Capacity Condition, labeling, co Contents/Capacity condition, gaskets,	ntents, locatio
tus of Siase list be rum: # ase checkly, well locaskets Missing Replaced	Blaine, WA ite: A CTO elow ALL DRU Descri K the condition k, etc.: Bolts (M) Missing (R) Replaced	UMS @ site	Condition Condition ELLS @ site:	escription, cor Labeling i.e., well box Manufacture	Contents/Capacity Condition, gaskets, condition, gaskets, ell Box er/Size/# of Bolts	ntents, location Location , bolts, well
ase check ase check ase check askets Missing Replaced	Describle K the conditions (M) Missing (R) Replaced	UMS @ site	Condition Condition ELLS @ site: Well Lock Y/N	i.e., well box	Contents/Capacity condition, gaskets, Box er/Size/# of Bolts	Location bolts, well
ase list be rum: # ase check g, well loc askets Missing Replaced	Describe K the condition k, etc.: Bolts (M) Missing (R) Replaced	UMS @ site	Condition Condition ELLS @ site: Well Lock Y/N	i.e., well box	Contents/Capacity condition, gaskets, Box er/Size/# of Bolts	Location bolts, well
ase check d, well locaskets Missing Replaced	Descri	UMS @ site	Condition Condition ELLS @ site: Well Lock Y/N	i.e., well box	Contents/Capacity condition, gaskets, Box er/Size/# of Bolts	Location bolts, well
ase check j, well loc askets Missing Replaced	k the conditionsk, etc.: Bolts (M) Missing (R) Replaced	well Plug Y/N	Well Lock	i.e., well box We Manufacture	condition, gaskets,	, bolts, well
y, well loc askets Missing Replaced	k the condition k, etc.: Bolts (M) Missing (R) Replaced	well Plug Y/N	Well Lock Y/N	We Manufacture	ell Box er/Size/# of Bolts	Other
y, well loc askets Missing Replaced	Bolts (M) Missing (R) Replaced	Well Plug Y/N	Well Lock Y/N	We Manufacture	ell Box er/Size/# of Bolts	Other
y, well loc askets Missing Replaced	Bolts (M) Missing (R) Replaced	Well Plug Y/N	Well Lock Y/N	We Manufacture	ell Box er/Size/# of Bolts	Other
y, well loc askets Missing Replaced	Bolts (M) Missing (R) Replaced	Well Plug Y/N	Well Lock Y/N	We Manufacture	ell Box er/Size/# of Bolts	Other
y, well loc askets Missing Replaced	Bolts (M) Missing (R) Replaced	Well Plug Y/N	Well Lock Y/N	We Manufacture	ell Box er/Size/# of Bolts	Other
Missing Replaced	(M) Missing (R) Replaced	Plug Y/N	Lock Y/N >	Manufacture	er/Size/# of Bolts	
Replaced 000- 000- 000-	(R) Replaced	Y/N	Y/N>	Manufacture	er/Size/# of Bolts	
900- 900- 900-			<u></u> ラ	e Mo	PRIO K3	WON JWE
900- 900- 900-	book	R	T- /	<i>B'</i> [V] ₀	ERIO KO	MON VICE
800. 000-	6000	R	T- /	···		
500 500	6000	R	R			
<u> </u>			 			
•	_					
<u> </u>					1	ļ.···
000			5			
2010					 	·
70O-			<u> </u>			:=
ap						
ο <u>Ω</u>			>			
00-						-
10000000		gen VM in	/			
						>-, = '
				· .		
		· ·				<u> </u>
		"				
	<u></u>		 	<u> </u>		
			 			
l		7		<u> </u>		
	20 =	00-				

Standard Operating Procedure, Low-Flow Purging and Sampling

Gettler-Ryan Inc. field personnel adhere to the following Standard Operating Procedure (SOP) for the collection and handling of representative groundwater samples using the Low-Flow (Minimal-Drawdown) Purging technique. This SOP incorporates purging and sampling methods discussed in U.S. EPA, Ground Water Issue, Publication Number EPA/540/S-95/504, April 1996 by Puls, R.W. and M.J. Barcelona - "Low-Flow (Minimal-Drawdown) Ground-Water Sampling Procedures."

A QED Well WizardTM (or equivalent) bladder pump or Peristaltic Pump will be used to purge and sample selected wells as outlined in the scope-of-work. An in-line flow cell or other multi-parameter meter is used to collect water quality indicating parameters during purging.

Initial Pump Discharge Test Procedures

The Static Water Level (SWL) is measured in all wells at the site prior to the installation of the pump or tubing and initiation of the test procedures in any well. In addition, the presence or absence of separate-phase hydrocarbons (SPH) is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot. The SWL measurement and SPH thickness, if any, will be recorded on the field data sheet.

The bladder pump or suction inlet tubing of the peristaltic pump is then positioned with its inlet located within the screened interval of the well. The in-line flow cell is then connected to the discharge tubing. After pump installation, the SWL is allowed to recover to its original level. The pump is then started at a discharge rate between 100 ml to 300 ml per minute with the in-line flow cell connected. The water level is monitored continuously for any change from the original measurement and the discharge rate is adjusted until an optimum discharge rate (ODR) is determined. The goal for the ODR is to produce a stable drawdown of less than 0.1 meter as allowed by site conditions; however the total drawdown from the initial SWL should not exceed 25% of the distance between pump inlet location and the top of the well screen. Once achieved, the ODR will be confirmed by volumetric discharge measurement and recorded on the field data sheet.

Purging and Water Quality Parameter Measurement

When the ODR has been determined and the SWL drawdown has been established within the acceptable range, and a minimum of one pump system volume (bladder volume and/or discharge tubing volume) has been purged, field measurements for temperature (T), pH, conductivity (Ec), and if required, oxygen reduction potential (ORP) and dissolved oxygen (DO) will be collected and documented on the field data sheet. Measurements should be taken every three to five minutes until parameters stabilize for three consecutive readings. The minimum parameter subset of T (\pm 10%), pH (\pm 0.1 unit), and Ec (\pm 10 uS) are required to stabilize. Additional parameters that may be required are DO (\pm 0.2 mg/l) and ORP (\pm 20 mV).

Sample Collection

When water quality parameters have stabilized, and the SWL drawdown remains established within the acceptable range, groundwater sample collection may begin. If used, the in-line flow cell and its tubing are disconnected from the discharge tubing prior to sample collection. Water samples are collected from the discharge tubing into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler,

maintained at 4°C for transport to the laboratory. A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

Site Address:		1122		Job Number:	386756		
	568 Peace P	ortal Driv	/e	Event Date:	Q.15	5/9.14.12	- (inclusive)
City:	Blaine, WA			Sampler:	<u></u>	_	_ (
						`\	
Well ID	MW- \	_	D	ate Monitored:	æ.	13.12	
Well Diameter	1 (2) in		14-1				_
Total Depth	15.700 ft.		Volume Factor			= 0.17 3"= 0.38 = 1.50 12"= 5.80	
Depth to Water			heck if water column	is less then 0.50	O ft.		
	6.78	xVF	=_ _		Estimated Purge Vo	olume:	_gal.
Depth to Water	w/ 80% Recharge	- ! [(Height of V	Vater Column x 0.20) +		/	1:	
				•		eted:	
Purge Equipment:		\$	ampling Equipment:			duct:	
Disposable Bailer		Di	sposable Bailer		Depth to Wa	ter:	ft
Stainless Steel Baile	er	Pr	essure Bailer			Thickness:	
Stack Pump			etal Filters		Visual Confir	mation/Description	ነ:
Suction Pump			eristaltic Pump	X	(A)		
Grundfos			ED Bladder Pump			bsorbant Sock (circ d from Skimmer:_	
Peristaltic Pump	<u> </u>	01	ther:		Amt Remove	d from Well:	yaı
QED Bladder Pump						ved:	
Other:						sferred to:	
					<u> </u>		····
Start Time (purge			Weather Con	_	SUN		
	ate: <u> </u>				Odor: Y / N)	
Ammana Class Ca	ite: 100		Cadimant Da	a a aire ai a a .			
Approx. Flow Ra		mlpm	Sediment De	scription:	NONE		
Did well de-wate	-/	, mipm yes, Time:			NONE gal. DTW @ Sa	ampling:	6.257
Did well de-wate	r? Ngb If	• '	Volun	ne:	gal. DTW @ Sa		
Did well de-wate	volume	• '	Conductivity	ne:	gal. DTW @ Sa D.O.	ORP	Gauge DTW as parameters
Did well de-wate Yime (2400 hr.)	Volume (Liters)	yes, Time:	Conductivity	Temperature	gal. DTW @ Sa		Gauge DTW
Did well de-wate	volume	yes, Time:	Conductivity (pmhee/cm us)	ne:	gal. DTW @ Sa D.O.	ORP	Gauge DTW as parameters
Did well de-wate Yime (2400 hr.)	Volume (Liters)	yes, Time: pH <u>요.Чㅎ</u> 실. <u>ዛ</u> ㅎ	Conductivity (pmhoc/cm us)	Temperature (C) F) 15.9	D.O. (mg/L)	ORP	Gauge DTW as parameters are recorded
Did well de-wate Yime (2400 hr.)	Volume (Liters)	yes, Time:	Conductivity (pmhee/cm us)	Temperature	D.O. (mg/L)	ORP	Gauge DTW as parameters are recorded
Did well de-wate Yime (2400 hr.)	Volume (Liters)	yes, Time: pH <u>요.Чㅎ</u> 실. <u>내</u> ㅎ	Conductivity (pmhoc/cm us)	Temperature (C) F) 15.9	D.O. (mg/L)	ORP	Gauge DTW as parameters are recorded
Did well de-wate Yime (2400 hr.)	Volume (Liters)	yes, Time: pH らいっ らいっ らいっち	Conductivity (purhoc/crn µS) . 45Z . 45Z	Temperature (C) F) 15.9 16.9 16.9	D.O. (mg/L)	ORP	Gauge DTW as parameters are recorded
Did well de-wate Yime (2400 hr.)	Volume (Liters)	yes, Time: pH らいっ らいっ らいっち	Conductivity (pmhoc/cm us)	Temperature (C) F) 15.9 15.9 15.9	D.O. (mg/L)	ORP	Gauge DTW as parameters are recorded
Did well de-wate (2400 hr.) (2400 pr.) (2400 pr.) (2400 pr.)	Volume (Liters) 1.9 2.1	yes, Time: pH らいっ らいっ らいっ	Conductivity (pmhoc/cro_us) . 43Z . 45Z . 45Z ABORATORY IN PRESERV. TYPE	Temperature (C) F) 15.9 16.9 16.9	D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø921 Ø921 Ø921	Volume (Liters) 1.9 2.4 (#) CONTAINER	yes, Time: pH らいら らいら REFRIG.	Conductivity (pmhee/cm µS) . 45Z . 45Z . 45Z ABORATORY IN	Temperature F) 15.9 16.9 16.9 FORMATION LABORATORY	gal. DTW @ Sa	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø921 Ø921 Ø921	Volume (Liters) 1.8 2.4 (#) CONTAINER X voa vial	pH 6.45 6.45 6.45 REFRIG. YES	Conductivity (pmhoc/cm us) - 43Z - 45Z - 45Z - 45Z ABORATORY IN PRESERV. TYPE HCL	Temperature F) 15.9 16.9 16.9 LABORATION LABORATORY LANCASTER	gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø921 Ø921 Ø921	Volume (Liters) 1.8 2.4 (#) CONTAINER X voa vial	pH 6.45 6.45 6.45 REFRIG. YES	Conductivity (pmhoc/cm us) - 43Z - 45Z - 45Z - 45Z ABORATORY IN PRESERV. TYPE HCL	Temperature F) 15.9 16.9 16.9 LABORATION LABORATORY LANCASTER	gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø921 Ø921 Ø921	Volume (Liters) 1.8 2.4 (#) CONTAINER X voa vial	pH 6.45 6.45 6.45 REFRIG. YES	Conductivity (pmhoc/cm us) - 43Z - 45Z - 45Z - 45Z ABORATORY IN PRESERV. TYPE HCL	Temperature F) 15.9 16.9 16.9 LABORATION LABORATORY LANCASTER	gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø921 Ø921 Ø921	Volume (Liters) 1.8 2.4 (#) CONTAINER X voa vial	pH 6.45 6.45 6.45 REFRIG. YES	Conductivity (pmhoc/cm us) - 43Z - 45Z - 45Z - 45Z ABORATORY IN PRESERV. TYPE HCL	Temperature F) 15.9 16.9 16.9 LABORATION LABORATORY LANCASTER	gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø921 Ø921 Ø921	Volume (Liters) 1.8 2.4 (#) CONTAINER X voa vial	pH 6.45 6.45 6.45 REFRIG. YES	Conductivity (pmhoc/cm µS)	Temperature F) 15.9 16.9 16.9 LABORATION LABORATORY LANCASTER	gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø921 Ø921 Ø921	Volume (Liters) 1.8 2.4 (#) CONTAINER X voa vial	pH 6.45 6.45 6.45 REFRIG. YES YES	Conductivity (pmhoc/cm us) - 43Z - 45Z - 45Z - 45Z ABORATORY IN PRESERV. TYPE HCL	Temperature F) 15.9 16.9 16.9 LABORATION LABORATORY LANCASTER	gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø4 (9) Ø4 2-1 Ø4 2-1 Ø4 2-1 Ø4 2-1	Volume (Liters) 1.9 2.1 2.4 (#) CONTAINER (x voa vial 2 x 1 liter ambers	pH 6.45 6.45 6.45 REFRIG. YES YES	Conductivity (pmhoc/cm µS)	Temperature F) 15.9 16.9 16.9 LABORATION LABORATORY LANCASTER	gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded
Time (2400 hr.) Ø4 (9) Ø4 2-1 Ø4 2-1 Ø4 2-1 Ø4 2-1	Volume (Liters) 1.9 2.1 2.4 (#) CONTAINER (x voa vial 2 x 1 liter ambers	pH 6.45 6.45 6.45 REFRIG. YES YES	Conductivity (pmhoc/cm µS)	Temperature F) 15.9 16.9 16.9 LABORATION LABORATORY LANCASTER	gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 56.1 56.1	Gauge DTW as parameters are recorded

Client/Facility#:	Chevron #9-	1122		Job Number:	386756		
Site Address:	568 Peace Pe	ortal Dri	ve	Event Date:	4.11	3/4.14.12	(inclusive)
City:	Blaine, WA			Sampler:		(- -	
Well ID	MW-Z	_	D	ate Monitored:	9.1	3.12	
Well Diameter	1/2) in		M-1	2/47-00			
Total Depth	_15.35 ft.	-	Volume Factor			= 0.17 3"= 0.38 = 1.50 12"= 5.80	
Depth to Water	4.66 ft.		Check if water column	is less then 0.5	D ft.		
	14.69	xVF	<u> </u>	x3 case volume =	Estimated Purge V	olume:	gal.
Depth to Water	w/ 80% Recharge	[(Height of	Water Column x 0.20) +	DTWJ: <u>6.79</u>	Time Starte	d:	(2400 hrs)
						eted:	
Purge Equipment:			Sampling Equipment:			duct:	
Disposable Bailer Stainless Steel Baile			Disposable Bailer Pressure Bailer			ter:	
Stack Pump			ressure baller Metal Filters			n Thickness: rmation/Description:	
Suction Pump			Peristaltic Pump		Visual Collin	mation/Description.	
Grundfos			QED Bladder Pump			bsorbant Sock (circle	
Peristaltic Pump			Other:			ed from Skimmer:	
QED Bladder Pump						ed from Well: ved:	
Other:	<u>.</u>					nsferred to:	
Start Time (purg	(B): 12(6		Weather Con	ditions:	50N		
Sample Time/Da	ate: 1246 / q	1317	Water Color:	CLEAR	Odor: 1 N	MILD	
Approx. Flow Ra	· · · · · · · · · · · · · · · · · · ·	mlpm	Sediment De		NONE		
Did well de-wate		yes, Time		• —	gal. DTW @ Sa	ampling: 5	.42
_			Conductivity				Gauge DTW
Time (2400 hr.)	Volume (Liters)	pН	Conductivity	Temperature	D.O.	ORP	as parameters
			(pininosiam po)		(mg/L)	(mV)	are recorded
1255	<u> </u>	6.19	<u>.785</u>	(7.gb	<u></u>	-114.1	5.42
12.56		6.29	<u>.765</u>	17.1	<u></u>	-114.2	5.42
1239	2.4	6.29	<u>.785</u>		#	-114.2	5.42
			LABORATORY IN	FORMATION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		ANALYSES	
MW-2	x voa vial	YES	HCL	LANCASTER	NWTPH-Gx/BTEX	, ,	
	2x 1 liter ambers	YES	HCL	LANCASTER	NWTPH-Dx w/sgc	_	
_							
			-				
L			<u></u>		<u></u>		
COMMENTS:	Depth Pump S	Set At:	11-1	2			
		·-			100.0		
		_					
Add/Paplaced	Lock:		(Penland Dive		A	D-14:	
Addinaplaced	LUCK	Add	/Replaced Plug:		Add/Replaced	DOIL:	_

Client/Facility#:	Chevron #9-	1122		Job Number:	386756		
Site Address:	568 Peace Pe	ortal Driv	/e	Event Date:	9.13	9.14.12	- (inclusive)
City:	Blaine, WA			Sampler:	-(10	I.P	_(,
						9.1	<u> </u>
Well ID	MW-3	_		Date Monitored:	9.1	3.12	
Well Diameter	1 /(2) in.	<u>.</u>	Volum	e 3/4"= 0.0		"= 0.17 3"= 0.38	
Total Depth	15.15 ft.		Factor			= 0.10 3 = 0.38 = 1.50 12"= 5.80	
Depth to Water	5.44 ft	_ □ ≎	heck if water colum	n is less then 0.50	O ft.		
	9.71	xVF	<u> </u>	x3 case volume =	Estimated Purge V	olume:	_ gal.
Depth to Water	w/ 80% Recharge	[(Height of V				d:	(2400 hrs)
						leted:	
Purge Equipment:		Ş	empling Equipment:			oduct:	
Disposable Bailer		D	isposable Bailer		Depth to Wa	ster:	ft
Stainless Steel Baile	·r	Pi	ressure Bailer		Hydrocarboi	n Thickness:	ft
Stack Pump		M	etal Filters		Visual Confi	rmation/Description	n:
Suction Pump			eristaltic Pump	X			
Grundfos		Q	ED Bladder Pump			bsorbant Sock (circ	
Peristaltic Pump	×	0	ther:			ed from Skimmer:_ ed from Well:	
QED Bladder Pump						ed nom vven	
Other:						nsferred to:	gai
							···
Start Time (purge Sample Time/Da	ite: 1156 / 9		Weather Color: Water Color:	CLEAR	Sok Odor: Y /N	<u> </u>	
Approx. Flow Ra	ite: 100	mlpm	Sediment De	cariation:			
		,	Occument De	acription.	HONE		
Did well de-wate	1//	yes, Time:		_	gal. DTW @ Sa	ampling: 5	.92
Did well de-wate	r? No If	, -	Volum	me:	gal. DTW @ S		-
Did well de-wate	r? No If	, -	Volum	ne:	gal. DTW @ Sa	ORP	. 92 Gauge DTW as parameters
Did well de-wate	r? No If	yes, Time:	Volum	me:	gal. DTW @ S		Gauge DTW
Did well de-wate	r? No If	yes, Time:	Volum	ne:	gal. DTW @ Sa	ORP	Gauge DTW as parameters
Did well de-wate Time (2400 hr.)	Volume (Liters)	yes, Time:	Conductivity (umhos/cm us)	Temperature	gal. DTW @ Sa □.O. (mg/L)	ORP (mV)	Gauge DTW as parameters are recorded
Time (2400 hr.)	Volume (Liters)	yes, Time:	Conductivity (umbos/cm_us)	Temperature	gal. DTW @ Sa	ORP (mV)	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.)	Volume (Liters)	yes, Time:	Conductivity (umhos/cm us)	Temperature (C) F)	gal. DTW @ Sa □.O. (mg/L)	ORP (mV)	Gauge DTW as parameters are recorded
Time (2400 hr.)	Volume (Liters)	yes, Time:	Conductivity (umhos/cm us) .554 .564	Temperature C F) 18.3	gal. DTW @ Sa □.O. (mg/L)	ORP (mV)	Gauge DTW as parameters are recorded 5.99
Did well de-wate Time (2400 hr.) (145 (146	Volume (Liters) 1.8 1.1 1.9	yes, Time:	Conductivity (umhos/cm uS) .554 .564 .564	Temperature C F) 18.3 18.3	gal. DTW @ Sa □.O. (mg/L)	ORP (mV) 128.2 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.)	Volume (Liters) 1.9 1.1 1.9 (#) CONTAINER	pH SUB SUB SUB SUB SUB SUB SUB SU	Conductivity (umbos/cm us) .554 .564 .564 ABORATORY IN	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY	gal. DTW @ Sa	ORP (mV) 128.2 128.3	Gauge DTW as parameters are recorded 5.99
Did well de-wate Time (2400 hr.) (145 (146	Volume (Liters) L.1 L.1 L.9 (#) CONTAINER x voa vial	pH LUC GUD REFRIG. YES	Conductivity (umhos/cm uS) .55-1 .56-1 ABORATORY IN PRESERV. TYPE HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.)	Volume (Liters) 1.9 1.1 1.9 (#) CONTAINER	pH SUB SUB SUB SUB SUB SUB SUB SU	Conductivity (umbos/cm us) .554 .564 .564 ABORATORY IN	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY	gal. DTW @ Sa	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.)	Volume (Liters) L.1 L.1 L.9 (#) CONTAINER x voa vial	pH LUC GUD REFRIG. YES	Conductivity (umhos/cm uS) .55-1 .56-1 ABORATORY IN PRESERV. TYPE HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.)	Volume (Liters) L.1 L.1 L.9 (#) CONTAINER x voa vial	pH LUC GUD REFRIG. YES	Conductivity (umhos/cm uS) .55-1 .56-1 ABORATORY IN PRESERV. TYPE HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.)	Volume (Liters) L.1 L.1 L.9 (#) CONTAINER x voa vial	pH LUC GUD REFRIG. YES	Conductivity (umhos/cm uS) .55-1 .56-1 ABORATORY IN PRESERV. TYPE HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.)	Volume (Liters) L.1 L.1 L.9 (#) CONTAINER x voa vial	pH LUC GUD REFRIG. YES	Conductivity (umhos/cm uS) .55-1 .56-1 ABORATORY IN PRESERV. TYPE HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.) (145 (146 (147)	Volume (Liters) (#) CONTAINER X voa vial X 1 liter ambers	PH PH PH PH PH PH PH PH PH PH	Conductivity (umhos/cm µS) .554 .564 .564 .FACI PRESERV. TYPE HCL HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.)	Volume (Liters) L.1 L.1 L.9 (#) CONTAINER x voa vial	PH PH PH PH PH PH PH PH PH PH	Conductivity (umhos/cm uS) .55-1 .56-1 ABORATORY IN PRESERV. TYPE HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.) (145 (146 (149)	Volume (Liters) (#) CONTAINER X voa vial X 1 liter ambers	PH PH PH PH PH PH PH PH PH PH	Conductivity (umhos/cm µS) .554 .564 .564 .FACI PRESERV. TYPE HCL HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99
Time (2400 hr.) (145 (146 (149)	Volume (Liters) (#) CONTAINER X voa vial X 1 liter ambers	PH PH PH PH PH PH PH PH PH PH	Conductivity (umhos/cm µS) .554 .564 .564 .FACI PRESERV. TYPE HCL HCL	Temperature C F) 18.3 18.3 18.3 FORMATION LABORATORY LANCASTER	D.O. (mg/L) MWTPH-Gx/BTEX	ORP (mV) 128.2 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3	Gauge DTW as parameters are recorded 5.99

Client/Facility#:	Chevron #9-1	122		Job Number:	386756		
Site Address:	568 Peace Po	rtal Drive	3	Event Date:	9.13	9.14.12	(inclusive)
				Sampler:			_ (,
City:	Blaine, WA		_	Samplet.		τ .	-
VA/-11 1/2	MW- ฝ		D		32.2		
Well ID			D:	ate Monitored:	9.1	5-12	
Well Diameter	1 /(Z) in.		Volume			= 0.17 3"= 0.38	
Total Depth	15.35 ft	_	Factor (12"= 5.80	<u> </u>
Depth to Water	<u>6.99</u> ft.	L Ch	eck if water column	is less then 0.50) ft.		
	9.35	xVF	=	x3 case volume =	Estimated Purge Vo	olume:	gal.
Depth to Water i	w/ 80% Recharge	(Height of Wa	ater Column x 0.20) +	DTW]: _7.6 7	Z Time Started	ļ:	(2400 hrs)
					и .	eted:	
Purge Equipment:			mpling Equipment:			duct:	
Disposable Bailer			posable Bailer			ter:	
Stainless Steel Baile			ssure Bailer			Thickness:	
Stack Pump			tal Filters		Visual Confir	mation/Description	n:
Suction Pump			istaltic Pump	<u></u>	Skimmer / Al	bsorbant Sock (cir	cle one)
Grundfos			D Bladder Pump			ed from Skimmer:_	
Peristaltic Pump	X	Oth	er:			d from Well:	
QED Bladder Pump					Water Remo		gal
Other:					Product Tran	isferred to:	
Start Time (purge): <u> </u>		Weather Con	altions.	50N		
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.)		pH b. 61 b. 62	Conductivity (prehasicm: uS) . 537 . 537 . 337	remperature C F)	Odor: Y N Gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 59.7 59.6	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.)	te: ISS If	pH b.b1 b.b2 b.p2	Sediment Des Volun Conductivity (pmb-s/cm - us) . 537 . 537 . 337	Temperature (C) F) 16.7 16.8	Odor: Y N Gal. DTW @ Sa	ORP (mV) 59.7 59.8	Gauge DTW as parameters are recorded 6.65
Approx. Flow Ra Did well de-wate Time (2400 hr.)	te: 100 f	pH w.pl w.pl c.pl	Sediment Des Volun Conductivity (pmb-s/cm-p3) . 337 . 337 . 337 ABORATORY IN PRESERV. TYPE	Temperature (C) F) 16.7 16.8 FORMATION LABORATORY	Odor: Y N gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 59.7 59.8 OP.9	Gauge DTW as parameters are recorded 6.65
Approx. Flow Ra Did well de-wate Time (2400 hr.)	Volume (Liters) 1.8 Z.1 2.4 (#) CONTAINER x voa viai	pH w.pl w.pl c.pl c.pl c.pl	Sediment Des Volun Conductivity (pmb-s/cm-u3) . 337 . 337 . 337 ABORATORY IN PRESERV. TYPE HCL	Temperature (C) F) 16.7 16.8 FORMATION LABORATORY LANCASTER	Odor: Y N gal. DTW @ Sa D.O. (mg/L) A NWTPH-Gx/BTEX	ORP (mV) 59.5 59.5 ANALYSES +MTBE(8260)	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.)	te: 100 f	pH w.pl w.pl c.pl	Sediment Des Volun Conductivity (pmb-s/cm-p3) . 337 . 337 . 337 ABORATORY IN PRESERV. TYPE	Temperature (C) F) 16.7 16.8 FORMATION LABORATORY	Odor: Y N gal. DTW @ Sa D.O. (mg/L)	ORP (mV) 59.5 59.5 ANALYSES +MTBE(8260)	Gauge DTW as parameters are recorded
Approx. Flow Ra Did well de-wate Time (2400 hr.)	Volume (Liters) 1.8 Z.1 2.4 (#) CONTAINER x voa viai	pH w.pl w.pl c.pl c.pl c.pl	Sediment Des Volun Conductivity (pmb-s/cm-u3) . 337 . 337 . 337 ABORATORY IN PRESERV. TYPE HCL	Temperature (C) F) 16.7 16.8 FORMATION LABORATORY LANCASTER	Odor: Y N gal. DTW @ Sa D.O. (mg/L) A NWTPH-Gx/BTEX	ORP (mV) 59.5 59.5 ANALYSES +MTBE(8260)	Gauge DTW as parameters are recorded 6.65
Approx. Flow Ra Did well de-wate Time (2400 hr.)	Volume (Liters) 1.8 Z.1 2.4 (#) CONTAINER x voa viai	pH w.pl w.pl c.pl c.pl c.pl	Sediment Des Volun Conductivity (pmb-s/cm-u3) . 337 . 337 . 337 ABORATORY IN PRESERV. TYPE HCL	Temperature (C) F) 16.7 16.8 FORMATION LABORATORY LANCASTER	Odor: Y N gal. DTW @ Sa D.O. (mg/L) A NWTPH-Gx/BTEX	ORP (mV) 59.5 59.5 ANALYSES +MTBE(8260)	Gauge DTW as parameters are recorded 6.65
Approx. Flow Ra Did well de-wate Time (2400 hr.)	Volume (Liters) 1.8 Z.1 2.4 (#) CONTAINER x voa viai	pH w.pl w.pl c.pl c.pl c.pl	Sediment Des Volun Conductivity (pmb-s/cm-u3) . 337 . 337 . 337 ABORATORY IN PRESERV. TYPE HCL	Temperature (C) F) 16.7 16.8 FORMATION LABORATORY LANCASTER	Odor: Y N gal. DTW @ Sa D.O. (mg/L) A NWTPH-Gx/BTEX	ORP (mV) 59.5 59.5 ANALYSES +MTBE(8260)	Gauge DTW as parameters are recorded 6.65
Approx. Flow Ra Did well de-wate Time (2400 hr.)	Volume (Liters) 1.8 Z.1 2.4 (#) CONTAINER x voa viai	pH w.pl w.pl c.pl c.pl c.pl	Sediment Des Volun Conductivity (pmb-s/cm-u3) . 337 . 337 . 337 ABORATORY IN PRESERV. TYPE HCL	Temperature (C) F) 16.7 16.8 FORMATION LABORATORY LANCASTER	Odor: Y N gal. DTW @ Sa D.O. (mg/L) A NWTPH-Gx/BTEX	ORP (mV) 59.5 59.5 ANALYSES +MTBE(8260)	Gauge DTW as parameters are recorded 6.65
Approx. Flow Ra Did well de-wate Time (2400 hr.)	Volume (Liters) 1.8 Z.1 2.4 (#) CONTAINER x voa viai	pH (a. p1 (b. p2 REFRIG. YES YES	Sediment Des Volun Conductivity (pmb-s/cm-u3) . 337 . 337 . 337 ABORATORY IN PRESERV. TYPE HCL	Temperature C F) 16.7 16.8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y N gal. DTW @ Sa D.O. (mg/L) A NWTPH-Gx/BTEX	ORP (mV) 59.5 59.5 ANALYSES +MTBE(8260)	Gauge DTW as parameters are recorded 6.65

Client/Facility#:	Chevron #9-1	1122		Job Number:	386756			
Site Address:	568 Peace Po	ortal Driv	/e	Event Date:	4.13	3/9.14.12	(inclusive)	
City:	Blaine, WA			Sampler:		4.7		
Well ID	MW- 5			ate Monitored:				
Well Diameter	1 //2 in.	-		ate Monitored:	4.	13.12		
		•	Volume			'= 0.12 3"= 0.38		
Total Depth	19.100 ft.		Factor	• •		= 1.50 12"= 5.80		
Depth to Water	9.28 ft.	-	heck if water column					
Denth to Water	w/ 80% Recharge	•	=		1			
Deptil to water	w/ 00 /6 Recitatige	[(meight of vi	valer Column x 0.20) +	DIVV). 11. 24		d:		
Purge Equipment:		S	ampling Equipment:			leted:		
Disposable Bailer			sposable Bailer			oduct: nter:		
Stainless Steel Baile			essure Bailer			n Thickness:	''	
Stack Pump			etal Filters		_	mation/Description:		
Suction Pump			eristaltic Pump	<u>×</u> _	1.300.00111			
Grundfos			ED Bladder Pump		Skimmer / A	bsorbant Sock (circle	e one)	
Peristaltic Pump			ther:			ed from Skimmer:		
QED Bladder Pump					Amt Remove	ed from Well:	gal	
Other:					Water Remo	oved:	gal	
					Product Trai	nsferred to:		
Start Time (purg	- Am		Weather Cor	-lisi				
Sample Time/Da					DAL			
- Sample Lime/D:	316. 1449 <i>0</i> 0 / C	7 172.177	MADIEL L'AIVE.					
•		•	Water Color:		Odor: N	MILD		
Approx. Flow Ra	ate: (\$	mlpm	Sediment De	scription:	NONE			
•	ate: (\$	•	Sediment De	scription:	NONE	ampling: 1\$	55	
Approx. Flow Ra Did well de-water	er? No If	mlpm	Sediment De	scription:	gal. DTW @ S	ampling: <u>بطی</u>	.55 Gauge DTW	
Approx. Flow Ra Did well de-wate	ate: 160 lf	mlpm	Sediment DeVolun	scription: ne: Temperature	gal. DTW @ Sa	ampling: <u>ريخ .</u> ORP	Gauge DTW as parameters	
Approx. Flow Ra Did well de-wate Time (2400 hr.)	volume (Liters)	mlpm yes, Time: pH	Sediment De	scription: ne: Temperature C F)	gal. DTW @ S	ampling: <u>بطی</u>	Gauge DTW as parameters are recorded	
Approx. Flow Ra Did well de-wate	volume (Liters)	mlpm yes, Time:	Sediment DeVolun	Temperature	gal. DTW @ Sa	ampling: <u>(め.</u> ORP (mV)	Gauge DTW as parameters	
Approx. Flow Ra Did well de-wate Time (2400 hr.)	volume (Liters)	mlpm yes, Time: pH	Sediment DeVolun	Temperature Temperature F)	gal. DTW @ Sa	ORP (mV) - 143.4 - 143.5	Gauge DTW as parameters are recorded	
Approx. Flow Ra Did well de-wate Time (2400 hr.)	volume (Liters)	mlpm yes, Time: pH	Sediment DeVolun	Temperature	gal. DTW @ Sa	ampling: <u>(め.</u> ORP (mV)	Gauge DTW as parameters are recorded	
Approx. Flow Ra Did well de-wate Time (2400 hr.)	volume (Liters)	mlpm yes, Time: pH 6.65 6.65	Sediment DeVolun	Temperature Temperature F)	gal. DTW @ Sa	ORP (mV) - 143.4 - 143.5	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) [4 6 2	volume (Liters)	mlpm yes, Time: pH 6.65 6.65	Sediment De Volur Conductivity (pmhoe/sm µS)	Temperature (C) F) 18.5 18.3	gal. DTW @ Sa	ORP (mV) - 143.4 - 143.5	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) (4 6 2-) (4 1 1 1	volume (Liters) 2. \ 2. \ 2. \ (#) CONTAINER	mlpm yes, Time: pH 6.65 6.65 REFRIG.	Sediment DeVolun	Temperature Temperature FORMATION LABORATORY	gal. DTW @ S.	ORP (mV) - 143.ビー143.ビー143.G	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) 14 62	volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ X voa vial	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES	Sediment De Volun Conductivity (pmhoe/sm µS) ABORATORY IN PRESERV, TYPE HCL	Temperature Temperature FORMATION LABORATORY LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) (4 6 2-) (4 1 1 1	Volume (Liters) 2. \ 2. \ 2. \ 2. \ (#) CONTAINER	mlpm yes, Time: pH 6.65 6.65 REFRIG.	Sediment De Volun Conductivity (pmhoc/sm µS) ABORATORY IN PRESERV, TYPE	Temperature Temperature FORMATION LABORATORY	gal. DTW @ S.	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) (4 6 2-) (4 1 1 1	volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ X voa vial	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES	Sediment De Volun Conductivity (pmhoe/sm µS) ABORATORY IN PRESERV, TYPE HCL	Temperature Temperature FORMATION LABORATORY LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) (462- (414	volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ X voa vial	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES	Sediment De Volun Conductivity (pmhoe/sm µS) ABORATORY IN PRESERV, TYPE HCL	Temperature Temperature FORMATION LABORATORY LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) (462- (414	volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ X voa vial	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES	Sediment De Volun Conductivity (pmhoe/sm µS) ABORATORY IN PRESERV, TYPE HCL	Temperature Temperature FORMATION LABORATORY LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) (462- (414	volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ X voa vial	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES	Sediment De Volun Conductivity (pmhoe/sm µS) ABORATORY IN PRESERV, TYPE HCL	Temperature Temperature FORMATION LABORATORY LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) LU LU LU LU SAMPLE ID MW-6	Volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ Z. \ Z. \ Z. \ Z.	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES YES	Sediment De Volur Conductivity (pmhee/cm ps) ABORATORY IN PRESERV. TYPE HCL HCL	Temperature Temperature F) F) ABORATION LABORATORY LANCASTER LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) (462- (414	volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ X voa vial	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES YES	Sediment De Volun Conductivity (pmhoe/sm µS) ABORATORY IN PRESERV, TYPE HCL	Temperature Temperature F) F) ABORATION LABORATORY LANCASTER LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded (\$\phi\$.36	
Approx. Flow Ra Did well de-wate Time (2400 hr.) LU 60- LU 11 SAMPLE ID MW-6	Volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ Z. \ Z. \ Z. \ Z.	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES YES	Sediment De Volur Conductivity (pmhee/cm ps) ABORATORY IN PRESERV. TYPE HCL HCL	Temperature Temperature F) F) ABORATION LABORATORY LANCASTER LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded	
Approx. Flow Ra Did well de-wate Time (2400 hr.) LU 60- LU 11 SAMPLE ID MW-6	Volume (Liters) L.B. Z. \ Z. \ Z. \ Z. \ Z. \ Z. \ Z. \ Z.	mlpm yes, Time: pH 6.65 6.65 REFRIG. YES YES	Sediment De Volur Conductivity (pmhee/cm ps) ABORATORY IN PRESERV. TYPE HCL HCL	Temperature Temperature F) F) ABORATION LABORATORY LANCASTER LANCASTER	gal. DTW @ S. D.O. (mg/L)	ORP (mV) - 143.4 - 143.5 - 143.6 ANALYSES (+MTBE(8260)	Gauge DTW as parameters are recorded	

Client/Facility#:	Chevron #9-1	122		Job Number:	386756		
Site Address:	568 Peace Po	ortal Driv	ve	Event Date:	a 113	9.14.12	(inclusive)
City:	Blaine, WA			Sampler:		.2	·
Well ID	MW-6		D	ate Monitored:	9.1	3.12	
Well Diameter	1 /(2) in.		Volume	3/4"= 0.0		2"= 0.17 > 3"= 0.38	_
Total Depth	18.15 ft.		Factor			= 1.50 12"= 5.80	
Depth to Water	6.01 ft.		heck if water column	is less then 0.50) ft.		
	12.14	xVF	=	x3 case volume =	Estimated Purge \	/olume:	_ gal.
Depth to Water	w/ 80% Recharge	(Height of V	Vater Column x 0.20) +	DTW]: 8.43	Time Starte	ed:	(2400 hrs)
				450000000000000000000000000000000000000		oleted:	
Purge Equipment:	:	S	ampling Equipment:		Depth to Pr	roduct:	ft
Disposable Bailer		D	isposable Bailer		Depth to W	ater:	ft
Stainless Steel Bail	er	Р	ressure Bailer			on Thickness:	•
Stack Pump			etal Filters		Visual Cont	firmation/Description	ī.
Suction Pump			eristaltic Pump		Skimmer / /	Absorbant Sock (circ	la ana)
Grundfos			ED Bladder Pump			red from Skimmer:	
Peristaltic Pump QED Bladder Pump	<u></u>	U	ther:			red from Well:	
Other:	·				Water Rem		
Other.					Product Tra	insferred to:	
Start Time (purg Sample Time/D	ate: 1100/ 9		Weather Con Water Color:	CLEAR	SON Odor: Y I(N)	
Approx. Flow R		mlpm	Sediment De	_	LONE		
Did well de-wate	er? <u>No</u> If	yes, Time:	Volun	ne:	gal. DTW @ S	Sampling: <u> </u>	62_
Time (2400 hr.)	Volume (Liters)	pН	Conductivity (pmhos/cm - p3)	Temperature	D.O. (mg/L)	ORP (mV)	Gauge DTW as parameters
					(9/2)		are recorded
1049		6.32	<u>. 664</u>	<u> 17.2</u>	#	<u>-172.85</u>	052
10061		6.32	<u>.564</u>	17.3		-172.8	6.32
1964	9	6.5 <u>Z</u>	<u>.664</u>	17.3		-172.8	6.52
			LABORATORY IN	FORMATION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		ANALYSES	
MW- Ø	x voa vial	YES	HCL	LANCASTER	NWTPH-Gx/BTE	X+MTBE(8260)	
	1 liter ambers	YES	HCL	LANCASTER	NWTPH-Dx w/sg	C	
					ļ		
	 	<u> </u>					
COMMENTS:	Depth Pump S	et At:	14-16	'n			
					·		

Client/Facility#:	Chevron #9-11	22		Job Number:	386756			
Site Address:	568 Peace Poi	rtal Driv	/e	Event Date:	9.13	9.14.12	(inclusive)	
City:	Blaine, WA			Sampler:		7.7		
Well ID	MW- 7	-	D	ate Monitored:	a	いるいて	· .:	
Well Diameter	1/2 in.						<u> </u>	
Total Depth	18.05 ft.		Volume Factor (= 0.17 3"= 0.38 = 1.50 12"= 5.80		
Depth to Water	13.36 ft.	□lc	heck if water column					
		Tricken revisit	<u> </u>			olume:	gal.	
Depth to Water	w/ 80% Recharge [(l:	(2400 hrs)	
					Time Compl	eted:		
Purge Equipment:		Sa	ampling Equipment:		Depth to Pro	duct:	ft	
Disposable Bailer		Di	sposable Bailer		Depth to Wa	ter:	ft	
Stainless Steel Baile	er	Pr	essure Bailer		Hydrocarbor	Thickness:	ft	
Stack Pump		Me	etal Filters		Visual Confi	mation/Description:	-	
Suction Pump		P€	eristaltic Pump	<u> </u>	i ———			
Grundfos		QI	ED Bladder Pump			bsorbant Sock (circl		
Peristaltic Pump	X	0	ther:			d from Skimmer:		
QED Bladder Pump						d from Well: ved:		
Other:						sferred to:	gal	
					T Todact Trai	isieriea to		
Start Time (purgi	e): 1300		Weather Con	ditions:	50N			
Sample Time/Da		13.12	Water Color:	CLEAF	Odor: Y I(N)			
Approx. Flow Ra		ılpm	Sediment Des		HONE	_		
Did well de-wate		es, Time:		-	gal. DTW @ Sa	ampling: 13	.5¢	
			Conductivity		_		Gauge DTW	
Time	Volume	ρН		Temperature	D.O.	ORP	as parameters	
(2400 hr.)	(Liters)		(pmhoo/om pG)	(C) F)	(mg/L)	(mV)	are recorded	
1318	1.8 6	2.98	770	17.1	Ø.	-166.0	13.50	
1321		.98	1770	17.1	1	-166.0	15.50	
1324		.98	-77'B	17.1	<u>_</u>	-166.2	13.50	
						9-		
v			ADODATORY (A)	- COLLATION				
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATORY INI	LABORATORY		ANALYSES		
MW-'7	x voa vial	YES	HCL	LANCASTER	NWTPH-Gx/BTEX		_	
	Z_x 1 liter ambers	YES	HCL	LANCASTER	NWTPH-Dx w/sgc			
- -	 							
COMMENTO	D1- D C	4.84-	<u> </u>					
COMMENTS:	Depth Pump Se	t At:	15-16					
Add/Replaced	Lock:	Add/	Replaced Plug:		Add/Replaced	Bolt:		

Client/Facility#:	Chevron #9-112	2	Job Number:	386756	1	
Site Address:	568 Peace Porta	al Drive	Event Date:	9113	9.14.12	(inclusive)
City:	Blaine, WA		Sampler:			(
y -			Gampior.			
Weli ID	MW-@	ſ	Date Monitored:	a	15.17	
Well Diameter	1/2 in.				15.12	_
Total Depth	10 octa	Volum Factor			= 0.17 3"= 0.38 = 1.50 12"= 5.80	
Depth to Water	THE RESERVE THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	Check if water colum			= 1.50 12"± 5.80	
Copin to 110to	11 · Z 65 xVF					
Depth to Water		ight of Water Column x 0.20)	XJ Case Votume =			gal.
	m oo m roomango mio	ight of ventor Column x 0.20)	DIAN](.10-	1.0000 000000	1: eted:	(2400 hrs) (2400 hrs)
Purge Equipment:		Sampling Equipment:			duct:	
Disposable Bailer		Disposable Bailer			ter:	
Staintess Steel Bailt	er	Pressure Balter			Thickness:	#
Stack Pump		Metal Filters			mation/Description:	, <u></u>
Suction Pump		Peristaltic Pump	<u> </u>			
Grundfos	····	QED Bladder Pump			bsorbant Sock (circle ed from Skimmer:	
Peristaltic Pump	<u>K</u>	Other:		Ant Remove	ki from Well:	gal
QED Bladder Pump Other:				WaterRemo		gal
OUIST				Product Tran	sferred to:	
Chart Times (aven	-)- 1=2144	182 - 18 - 18	bb.4			
Start Time (purg		Weather Cor	nditions:	Son		
Sample Time/Da				Odor: Y /N) <u></u>	 .
Approx. Flow Ra				NONE		
Did well de-wate	er? No If yes,	Time:Volum	пе:	gal. DTW @ Sa	mpling:	0,12-
Time	Volume	Conductivity	Temperature	D.O.	ORP	Gauge DTW
(2400 hr.)	(Liters)	- (umbos/cm · µS)	(CDF)	(mg/L)	(mV)	as parameters are recorded
1903	1.80 65	3 442	(7.1)	do	-122.6	
18000	2. 6.0		17.12	-	-182.6	812
1869	2.4 6.		17.180	aD	-182 7	8112
		7				
SAMPLE ID	L (A) CONTAINED AF	LABORATORY IN				
MW-		FRIG. PRESERV. TYPE TES HCL	LABORATORY	NWTPH-Gx/BTEX	ANALYSES	
mir- y		ES HCL	LANCASTER	NWTPH-Dx w/sgc	HM 1 BE (626U)	
			001070121	The state of the s		
	 					
	1	<u></u>	<u> </u>			
COMMENTS:	Depth Pump Set A	1t: 105-165	-			
Add/Replaced	Lock:	Add/Replaced Plug:		Add/Deplaced	Palt:	
. tour topiciou		madritopiaced Flug		vonvahisced	Bolt:	_

Client/Facility#:	Chevron #9-	1122		Job Number:	386756	
Site Address:	568 Peace P	ortal Driv	/e	Event Date:	9.13.12	(inclusive)
City:	Blaine, WA			Sampler:	1. TAME	- (************************************
Well ID	MW-ST	_		ate Monitored:	9.13.12	<u>.</u>
Well Diameter	1 (2) in	<u>.</u>	Volume	e 3/4"= 0.02	2 1"= 0.04 2"= 0.17 3"	= 0.38
Total Depth	0.66 ft.		Factor	(VF) 4"= 0.66		= 5.80
Depth to Water		_ 🔲 o	heck if water columi	n is less then 0.50	ft.	
	5.57	xVF	- = 	x3 case volume =	Estimated Purge Volume:	gal.
Depth to Water	w/ 80% Recharge	(Height of V	Vater Column x 0.20) +	DTWJ: <u>5.74</u>	Time Started:	(2400 hrs)
					Time Completed:	
Purge Equipment:		S	ampling Equipment:		Depth to Product:	ft
Disposable Bailer		D	sposable Bailer		Depth to Water:	ft
Stainless Steel Baile	er	Pi	essure Bailer		Hydrocarbon Thickness:	ft
Stack Pump			etal Filters		Visual Confirmation/Desc	ription:
Suction Pump			eristaltic Pump	*_		
Grundfos		Q	ED Bladder Pump		Skimmer / Absorbant Soc	
Peristaltic Pump	y	0	ther:		Amt Removed from Skim Amt Removed from Well:	mer:gal
QED Bladder Pump					Water Removed:	
Other:	1990				Product Transferred to:	
			<u> </u>			
Start Time (purg	e): <u>(650</u>		Weather Cor	iditions:	50N	
Sample Time/Da	ate: <u>(7එන් / අ</u>	1.18.12	Water Color:		Odor: Y /(N)	
Approx. Flow Ra	, ,	mlpm	Sediment De	`	JONE	
Did well de-wate	7.7	yes, Time:			gal. DTW @ Sampling:	5.78
			41.5		Jan (5) +pg	
Time	Volume	рН	Conductivity	Temperature	D.O. ORF	as narameters
(2400 hr.)	(Liters)	F · · ·	(umhee/em µE)	(C) (F)	(mg/L) (mV)	are recorded
1648	182	6.76	· 5/Z_	19.00	Ø -a.4	5.78
1604	Z-[6.76	.512	19.(-a.	
1664	2.4	6.76	.612	14.	10 -a.	5.72
					7	
SAMPLE ID	(4) CONTAINED		ABORATORY IN			
MW- KT	(#) CONTAINER X voa vial	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES	
MAA-	2 x voa vial	YES YES	HCL HCL	LANCASTER LANCASTER	NWTPH-Gx/BTEX+MTBE(8260 NWTPH-Dx w/sgc	<i>)</i>
	The timer divisers	ب الساب	7100	DAIGONOTER	TWYTT TI-DX Wisgo	
						
		 · -				
COMMENTS:	Depth Pump S	Set At	66	- 7.6		6
	<u> </u>				<u></u>	
		<u></u>				
Add/Replaced	Lock:	Add/	Replaced Plug:		Add/Replaced Bolt:	

Client/Facility#:	Chevron #9-1122	<u> </u>	Job Number:	386756	
Site Address:	568 Peace Portal	Drive	Event Date:	7.13.12	(inclusive)
City:	Blaine, WA		Sampler:	1.8	
					
Well ID	MW-BT	C	Date Monitored:	9.13.12	
Well Diameter	1) 2 in.	Volum	e 3/4"= 0.02	- CT - CT - CT - CT - CT - CT - CT - CT	
Total Depth	11.95 ft.	Factor			0.38 5.80
Depth to Water	5.150 ft.	Check if water colum	n is less then 0.50) ft.	
	U.900 XVF	<u> </u>	x3 case volume =	Estimated Purge Volume:	gal.
Depth to Water	w/ 80% Recharge [(Heig	ht of Water Column x 0.20) +	DTWJ: 6.51	Time Started:	(2400 hrs)
				Time Completed:	
Purge Equipment:		Sampling Equipment:		Depth to Product:	
Disposable Bailer		Disposable Bailer		Depth to Water:	ft
Stainless Steel Bail	er	Pressure Bailer		Hydrocarbon Thickness:	
Stack Pump		Metal Filters		Visual Confirmation/Descri	ption:
Suction Pump		Peristaltic Pump	<u></u>		
Grundfos		QED Bladder Pump		Skimmer / Absorbant Sock	
Peristaltic Pump		Other:		Amt Removed from Skimm Amt Removed from Well:	
QED Bladder Pump	·			Water Removed:	
Other:	,			Product Transferred to:	gar
					<u> </u>
Start Time (purg Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	ate: 1766 9.15 ate: 100 mlpn	Sediment De	scription:	Odor: Y I(N) FINE: GREY galt DTW @ Sampling: _ D.O. ORP (mg/L) (mV)	
		LABORATORY IN			
SAMPLE ID	1 10-1	RIG. PRESERV. TYPE	LABORATORY	ANALYSES	
MW-8T		ES HCL ES HCL	LANCASTER	NWTPH-Gx/BTEX+MTBE(8260)	
	X rincer ambers	ES NOL	LANCASTER	NWTPH-Dx w/sgc	
			1		
	 				
COMMENTS	Donth Brown Sch A	4	14 1/2 200		
COMMENTS:	Depth Pump Set A		1" Newspe	C CONTINUE EVEN	CAREE
COMMENTS:		1: 1p-11	1" Newspe	R CONTINUE EVEN	CAREK

Client/Facility#:	Chevron #9-1122	2	Job Number:	386756	
Site Address:	568 Peace Porta	l Drive	Event Date:	9.13.12	(inclusive)
City:	Blaine, WA		Sampler:	d'Ryne	· ′
Well ID	MW-9T		Date Monitored:		
Well Diameter	1)/2 in.	_	Date Workored.	9.13.12	
Total Depth	11.46 ft		olume 3/4"= 0.02 actor (VF) 4"= 0.66		0.38
Depth to Water	4.300 ft.		actor (VF) $4"=0.66$ lumn is less then 0.50		5.80
Depin to Trater	7.15 ×VF				
Denth to Water	w/ 80% Recharge [(Hei			Estimated Purge Volume:	
Deptil to water	w/ 00 /0 Necharge ((nei	gnt of water Column x U.	20) + DTVVJ		(2400 hrs)
Purge Equipment:		Sampling Equipme	ent:	Time Completed: Depth to Product:	
Disposable Bailer		Disposable Bailer		Depth to Water:	
Stainless Steel Baile	+F	Pressure Bailer		Hydrocarbon Thickness:	
Stack Pump		Metal Filters		Visual Confirmation/Descri	
Suction Pump		Peristaltic Pump	<u> </u>	····	<u></u>
Grundfos		QED Bladder Pump		Skimmer / Absorbant Sock	
Peristaltic Pump	<u>K</u>	Other:		Amt Removed from Skimm Amt Removed from Well:_	
QED Bladder Pump				Water Removed:	
Other:				Product Transferred to:	
					<u> </u>
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.)	ite: mlpr	Time: Conductivity		Odor: Y (N) gal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	Gauge DTW as parameters are recorded
SAMPLE ID		FRIG. PRESERV. TY		ANALYSES	
MW-9T		/ES HCL	LANCASTER	NWTPH-Gx/BTEX+MTBE(8260)	
	1 liter ambers Y	ES HCL	LANCASTER	NWTPH-Dx w/sgc	
				Λ.	Λ
COMMENTS:	Depth Pump Set A	At: 10 - 11	- Wey Dew	ATTERD, Com. N.	Welness 1 Dal
bank		A		perfected, Com 11	- Later Laborator
- rample	ter a en	n ut even	CHECK LEW	104-10x / 5-60V	
-					
Add/Replaced	Lock:	Add/Replaced Plug	j:	Add/Replaced Bolt:	

Client/Facility#:	Chevron #9-	1122		Job Number:	386756		
Site Address:	568 Peace P	ortal Driv	ve	Event Date:	9.18	5.12	(inclusive)
City:	Blaine, WA			Sampler:	*	NAME.	,
		_					
Well ID	MW-10	٢		Date Monitored:	વન	2, (Z	
Well Diameter	(1)2 'in	•	Volum	e 3/4"= 0.0	2 (1=0.04) 2	"= 0.17 3"= 0.38	7
Total Depth	12.000 ft.		Factor	• •		= 1.50 12"= 5.80	
Depth to Water			heck if water colum				
Double to Motor	6.64				·		
Depth to water	w/ 80% Recharge	(Height of V	Vater Column x 0.20) +	· DTW]: <u> </u>		d:	
Purge Equipment:	<u> </u>	S	ampling Equipment:			eted:	
Disposable Bailer			isposable Bailer			oduct: iter;	
Stainless Steel Baile	er		ressure Bailer		38	n Thickness:	
Stack Pump			etal Filters			rmation/Description;	"
Suction Pump			eristaltic Pump				
Grundfos			ED Bladder Pump			bsorbant Sock (circle	
Peristaltic Pump		0	ther:		Amt Remov	ed from Skimmer:	gal
QED Bladder Pump					Amt Remov	ed from Well:	gal
Other:					Product Tra	oved:	gal
Approx. Flow Ra Did well de-wate Time (2400 hr.)	ate:	mlpm yes, Time:	Sediment De Sedime		D.O. (mg/L)	ORP	Gauge DTW as parameters are recorded
pand	_ <u> </u>	6A90	_dep	13.2	<u>ep</u>	-127.8	11.80
Leime							
			LABORATORY IN	FORMATION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	1	ANALYSES	
MW-107	x voa vial	YES	HCL	LANCASTER	NWTPH-Gx/BTEX	, , ,	
	2 x 1 liter ambers	YES	HCL	LANCASTER	NWTPH-Dx w/sg0		
ļ							
	-		<u> </u>				
			·		ļ 	<u> </u>	 -
					 		
COMMENTS:	Depth Pump S		were Dew	MELEO (II)	1911) 1 1515	ed, large	lot
Add/Replaced	Lock:	Add/	Replaced Plug: _		Add/Replaced	Bolt:	

Chevron Northwest Region Analysis Request/Chain of Custody

Lancaster Laboratories				A	cct. #:					For L		aster	Lab	orat			onl	•			
							Г					30S	Req	uest	ed				SCR #:		
Facility #: 568 Peace Portal Drive, E	VBS: BLAINE, WA	SAIODE			latrix		**************************************			LP1	rese	rvat	lon	Cod	es				☐ Results in Dry	ing neede	
Site Address: TB Lead Consultant: G-R, Inc., 6747 Sierra Court, Suite J, Dublin, CA 94568 Consultant Pri Mari Deanna L. Harding (deanna@grinc.com)				8	U Potable	tainers	8260 to Naphth				Cleanup	potta	2000	quantification					□ Must meet lov possible for 8 □ 8021 MTBE 0	260 comp	ounds on
Consultant Fij. Wgr			800			ပ်					Gel Ck	U							☐ Confirm MTB		
Consultant Phone #: 925-551-7555	Fax #:	920-001-7		1		er of	8021		es		Silica (Diss	AEPH	٥					☐ Confirm all hit	s by 8260	-01
Sampler:	J.+		Grab		in it	Oil U. Air U. Total Number of Containers	+ MTBE	8260 full scan	Oxygenates	NWTPH GX	NWTPH DX 12 S	Lead Total Diss. Di Method	☐ WAVPH ☐ WAEPH	NWTPH H HCID			e at		Run oxy		
Sample Identification	Date Collected	Time Collected	Grab	Soil	Water	Total	BTEX	8260 f		NWTP	NWTP	Lead	NA □	NWTP							
Q.A.	9.1312		X		X.	2	X			X									Comments /	Remark	s
- Cun		0930	X	\bot	K	8	X		\perp	X	X										
Z.(m)		1745	Х	+	X	15	X	+	-	X	X				_	_		Щ	Please forward t	he lab resu	ılts
mv.3		1155	X	1	X.	2	X	\vdash	-	X	Ķ.			\dashv				-	directly to the Le		ant
mw.4		1420	X V	+	X X	8	1 ×	\vdash		N	A				\dashv			=	and co:	G-R.	
mw.6		1100	V.		X	0	t	\vdash	+	₩	5				\dashv	-					
mw 7		1250	¥		X	5	1	\vdash	+	7	X			\vdash	\dashv	_					
8. Cm		1215	X	1	X	9	X		\dashv	χÌ	X	\neg			\dashv						
MW.ST		1700	X		K	9	Þχ		\top	X.	χ										
TB. WM		1750	Χ		X	6	X			χŢ	X										
TP. Gum		1726	X		×	9	X			X	X										
mw.lot	1	1515	X.		X	90	X		1	X	XI										
Turnaround Time Requested (TAT) (please circles ID. TAT 72 hour 48 hour			shed by	- 1	4		-		a.	ate ///	1.10	іпе	R	tecei	ved b	y;				Date	Time
24 hour 4 day 5 day	EDE/ED	Relinqui	shed by:	K	V				9	ate		ime /2/2		Recei	ved t	y:				Date	Time
Data Package Options (please circle if required)	BUHIEU	Relinqui	shed by:	1						ate	4	ime	-	Recei	ved b	y:				Date	Time
QC Summary Type I – Full Type VI (Raw Data)		Relinqui UPS	-	Comme	ercial (Carrier: Other_							R	Receiv	ved b	y:				Date	Time
	11	Tempera	ature Up	on Rec	eipt			o°	7				C	usto	dy Se	als	Intac	t?	Yes No		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2900 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron 6001 Bollinger Canyon Road L4310 San Ramon CA 94583

September 28, 2012

Project: 91122

Submittal Date: 09/15/2012 Group Number: 1336020 PO Number: 0015103668 Release Number: BAUHS State of Sample Origin: WA

Client Sample Description	Lancaster Labs (LLI) #
QA Water Sample	6790828
MW-1 Grab Water Sample	6790829
MW-2 Grab Water Sample	6790830
MW-3 Grab Water Sample	6790831
MW-4 Grab Water Sample	6790832
MW-5 Grab Water Sample	6790833
MW-6 Grab Water Sample	6790834
MW-7 Grab Water Sample	6790835
MW-8 Grab Water Sample	6790836
MW-5T Grab Water Sample	6790837
MW-8T Grab Water Sample	6790838
MW-9T Grab Water Sample	6790839
MW-10T Grab Water Sample	6790840

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	SAIC c/o Gettler-Ryan	Attn: Rachelle Munoz
COPY TO		
ELECTRONIC	SAIC	Attn: Jamalyn Green
COPY TO		•
ELECTRONIC	SAIC	Attn: Russ Shropshire
COPY TO		1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Respectfully Submitted,

fill M. Parker
Senior Specialist

(717) 556-7262

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Sample # WW 6790828

LLI Group # 1336020 Account # 11260

Project Name: 91122

Collected: 09/13/2012

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPBQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles ECY 97-	-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	N.D.	50	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	14:32	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	14:32	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	12264B20A	09/21/2012	12:02	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264B20A	09/21/2012	12:02	Catherine J	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

LLI Sample # WW 6790829 LLI Group # 1336020

11260

Sample Description: MW-1 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 09:30 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB01

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles ECY 97-	-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	N.D.	50	1
	croleum ECY 97- carbons w/Si modifie	-602 NWTPH-Dx	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	N.D.	29	1
12005	HRO C24-C40 w/Si Gel	n.a.	N.D.	68	1
The :	reverse surrogate, capric acid	1, is present at <1	. % .		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012 19:	10 Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012 19:	10 Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	12264C20A	09/23/2012 16:	02 Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012 16:	02 Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122650013A	09/27/2012 12:	51 Christine E Dolman	. 1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122650013A	09/22/2012 07:	00 Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Sample # WW 6790830

LLI Group # 1336020 Account # 11260

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 12:45 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB02

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	870	5	10
10943	Ethylbenzene	100-41-4	1,300	5	10
10943	Methyl Tertiary Butyl Ether	1634-04-4	20	5	10
10943	Toluene	108-88-3	33	5	10
10943	Xylene (Total)	1330-20-7	140	5	10
GC Vol	latiles ECY 97-	602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	9,600	250	5
	croleum ECY 97- carbons w/Si modifie	602 NWTPH-Dx	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	660	29	1
12005	HRO C24-C40 w/Si Gel	n.a.	N.D.	68	1
The :	reverse surrogate, capric acid	, is present at <1	%.		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	19:37	Kelly E Keller	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	19:37	Kelly E Keller	10
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-	1	12264C20A	09/23/2012	22:37	Catherine J	5
01146	GC VOA Water Prep	Gx SW-846 5030B	1	12264C20A	09/23/2012	22:37	Schwarz Catherine J Schwarz	5
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/26/2012	22:44	Christine E Dolman	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Group # 1336020 Account # 11260

LLI Sample # WW 6790831

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 11:55 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB03

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW	-846 826	50B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	0.5	0.5	1
10943	Methyl Tertiary Butyl H	ther	1634-04-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
		Y 97-602	NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12		n.a.	150	50	1
	croleum EC		NWTPH-Dx	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel		n.a.	N.D.	29	1
12005	HRO C24-C40 w/Si Gel		n.a.	N.D.	69	1
The :	reverse surrogate, capri	c acid, is	s present at <1	L%.		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	20:05	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	20:05	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	12264C20A	09/23/2012	16:24	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	16:24	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/26/2012	23:07	Christine E Dolman	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Sample # WW 6790832

LLI Group # 1336020 Account # 11260

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 10:15 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB04

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vo	latiles ECY 97	-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	N.D.	50	1
	troleum ECY 97 carbons w/Si modifi	-602 NWTPH-Dx	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	N.D.	29	1
12005	HRO C24-C40 w/Si Gel reverse surrogate, capric aci	n.a.	N.D.	69	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	20:32	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	20:32	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	12264C20A	09/23/2012	16:46	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	16:46	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/26/2012	23:29	Christine E Dolman	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Group # 1336020 Account # 11260

LLI Sample # WW 6790833

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 14:20 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB05

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	110	0.5	1
10943	Ethylbenzene	100-41-4	78	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	4	0.5	1
10943	Toluene	108-88-3	0.6	0.5	1
10943	Xylene (Total)	1330-20-7	3	0.5	1
GC Vol	latiles ECY 97	-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	580	50	1
	croleum ECY 97	-602 NWTPH-Dx	ug/l	ug/l	
-	-		0.1	0.0	
12005	DRO C12-C24 w/Si Gel	n.a.	81	29	1
	HRO C24-C40 w/Si Gel	n.a.	N.D.	67	1
The :	reverse surrogate, capric aci	d, is present at <1	L%.		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	21:00	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	21:00	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	12264C20A	09/23/2012	17:08	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	17:08	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/26/2012	23:52	Christine E Dolman	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

LLI Sample # WW 6790834 LLI Group # 1336020

11260

Sample Description: MW-6 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 11:00 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB06

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	10	0.5	1
10943	Ethylbenzene	100-41-4	84	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	1	0.5	1
10943	Xylene (Total)	1330-20-7	110	0.5	1
GC Vol	latiles ECY 97-	602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	2,500	50	1
	croleum ECY 97- carbons w/Si modifie	602 NWTPH-Dx	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	140	29	1
12005	HRO C24-C40 w/Si Gel	n.a.	N.D.	69	1
The :	reverse surrogate, capric acid	, is present at <1	왕.		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	21:28	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	21:28	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	12264C20A	09/23/2012	17:30	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	17:30	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/27/2012	00:14	Christine E Dolman	. 1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-7 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Sample # WW 6790835 LLI Group # 1336020

Account # 11260

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 13:30 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB07

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10943	Benzene	71-43-2	170	5	10
10943	Ethylbenzene	100-41-4	0.7	0.5	1
10943	Methyl Tertiary Butyl Ethe	r 1634-04-4	21	0.5	1
10943	Toluene	108-88-3	1	0.5	1
10943	Xylene (Total)	1330-20-7	2	0.5	1
GC Vol	latiles ECY 9	7-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	57	50	1
GC Petroleum ECY 97-602 NWTPH-Dx Hydrocarbons w/Si modified			ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	N.D.	29	1
12005	HRO C24-C40 w/Si Gel	n.a.	N.D.	67	1
The :	reverse surrogate, capric a	cid, is present at <	1%.		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	21:56	Kelly E Keller	1
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F122691AA	09/25/2012	11:22	Anita M Dale	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	21:56	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	F122691AA	09/25/2012	11:22	Anita M Dale	10
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-	1	12264C20A	09/24/2012	11:33	Catherine J	1
		Gx					Schwarz	
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/24/2012	11:33	Catherine J	1
							Schwarz	
12005	NWTPH-Dx water w/ 10g Si	ECY 97-602 NWTPH-	1	122680008A	09/27/2012	00:37	Christine E Dolman	1
	Gel	Dx modified						
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH-	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1
		Dx 06/97						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-8 Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Group # 1336020 Account # 11260

LLI Sample # WW 6790836

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 18:15 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB08

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles ECY 97-	-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	N.D.	50	1
	croleum ECY 97- carbons w/Si modifie	-602 NWTPH-Dx	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	N.D.	29	1
12005	HRO C24-C40 w/Si Gel	n.a.	N.D.	67	1
The :	reverse surrogate, capric acid	d, is present at <	L%.		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	22:23	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	22:23	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	12264C20A	09/23/2012	18:14	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	18:14	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/27/2012	00:59	Christine E Dolman	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5T Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

rage 1 of 1

LLI Sample # WW 6790837 LLI Group # 1336020 Account # 11260

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 17:00 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB5T

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles ECY 97-	-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	N.D.	50	1
	croleum ECY 97-	-602 NWTPH-Dx	ug/l	ug/l	
-				2.0	1
12005	DRO C12-C24 w/Si Gel	n.a.	N.D.	30	1
12005	HRO C24-C40 w/Si Gel	n.a.	N.D.	70	1
The :	reverse surrogate, capric acio	d, is present at <1	. % .		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	22:51	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	22:51	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	12264C20A	09/23/2012	18:36	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	18:36	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/27/2012	01:21	Christine E Dolman	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

LLI Sample # WW 6790838 LLI Group # 1336020

11260

Sample Description: MW-8T Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 17:50 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB8T

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-8	46 8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Eth	er 1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles ECY	97-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	N.D.	50	1
	croleum ECY	97-602 NWTPH-Dx	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	N.D.	30	1
12005				70	1
	HRO C24-C40 w/Si Gel reverse surrogate, capric	n.a. acid, is present at <	N.D. 1%.	70	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012	23:19	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012	23:19	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	12264C20A	09/23/2012	18:58	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	18:58	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/27/2012	01:44	Christine E Dolman	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012	22:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-9T Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Group # 1336020

Account # 11260

LLI Sample # WW 6790839

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 17:20 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB9T

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles ECY 97-	-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	N.D.	50	1
	croleum ECY 97- carbons w/Si modifie	-602 NWTPH-Dx	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	N.D.	30	1
12005 The	HRO C24-C40 w/Si Gel reverse surrogate, capric acid	n.a.	N.D. 1%.	70	1
	= ' -	· -			

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/21/2012 2	23:46	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/21/2012 2	23:46	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	12264C20A	09/23/2012	19:42	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	19:42	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680008A	09/27/2012 (02:06	Christine E Dolman	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680008A	09/24/2012 2	22:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-10T Grab Water Sample

Facility# 91122 Job# 386756

568 Peace Portal Drive - Blaine, WA

LLI Sample # WW 6790840

LLI Group # 1336020 Account # 11260

Project Name: 91122

Submitted: 09/15/2012 09:50

Reported: 09/28/2012 13:58

Collected: 09/13/2012 15:15 by JP Chevron

6001 Bollinger Canyon Road

L4310

San Ramon CA 94583

PPB10

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ethe	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles ECY 9	7-602 NWTPH-Gx	ug/l	ug/l	
08273	NWTPH-Gx water C7-C12	n.a.	N.D.	50	1
	croleum ECY 9	7-602 NWTPH-Dx ied	ug/l	ug/l	
12005	DRO C12-C24 w/Si Gel	n.a.	N.D.	30	1
12005	HRO C24-C40 w/Si Gel	n.a.	N.D.	69	1
The :	reverse surrogate, capric ac	id, is present at <	1%.		

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122651AA	09/22/2012	00:14	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122651AA	09/22/2012	00:14	Kelly E Keller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	12264C20A	09/23/2012	20:04	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	12264C20A	09/23/2012	20:04	Catherine J Schwarz	1
12005	NWTPH-Dx water w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	122680009A	09/27/2012	15:26	Heather E Williams	1
12007	NW Dx water w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	122680009A	09/24/2012	22:00	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: Chevron Group Number: 1336020

Reported: 09/28/12 at 01:58 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: F122691AA Benzene	Sample numbe	er(s): 679 0.5	0835 ug/l	92	92	77-121	0	30
Batch number: P122651AA Benzene Ethylbenzene Methyl Tertiary Butyl Ether Toluene Xylene (Total)	Sample numbe N.D. N.D. N.D. N.D. N.D.	er(s): 679 0.5 0.5 0.5 0.5 0.5	0828-67908 ug/l ug/l ug/l ug/l ug/l	340 102 94 100 104 96		77-121 79-120 68-121 79-120 77-120		
Batch number: 12264B20A NWTPH-Gx water C7-C12	Sample numbe	er(s): 679 50.	0828 ug/l	101		75-135		
Batch number: 12264C20A NWTPH-Gx water C7-C12	Sample numbe	er(s): 679 50.	0829-67908 ug/l	340 100	94	75-135	6	30
Batch number: 122650013A DRO C12-C24 w/Si Gel HRO C24-C40 w/Si Gel	Sample numbe N.D. N.D.	er(s): 679 30. 70.	0829 ug/l ug/l	84	85	50-120	2	20
Batch number: 122680008A DRO C12-C24 w/Si Gel HRO C24-C40 w/Si Gel	Sample numbe N.D. N.D.	er(s): 679 30. 70.	0830-67908 ug/l ug/l	339 78	77	50-120	1	20
Batch number: 122680009A DRO C12-C24 w/Si Gel HRO C24-C40 w/Si Gel	Sample numbe N.D. N.D.	er(s): 679 30. 70.	0840 ug/l ug/l	64	72	50-120	12	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: P122651AA	Sample	number(s): 6790828	-67908	40 UNSF	K: P790799)		
Benzene	104	105	72-134	1	30				
Ethylbenzene	99	99	71-134	0	30				
Methyl Tertiary Butyl Ether	99	100	72-126	1	30				
Toluene	109	111	80-125	2	30				
Xylene (Total)	101	101	79-125	0	30				

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: Chevron Group Number: 1336020

Reported: 09/28/12 at 01:58 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

DUP MS MSD MS/MSD BKG DUP RPD Dup RPD %REC%RECLimitsRPDMAXConcSample number(s):6790828UNSPK:P790503 RPD %REC <u>Analysis Name</u> Batch number: 12264B20A Conc RPD Max_ 75-135 NWTPH-Gx water C7-C12 86 90 30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water Batch number: F122691AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
Blank	99	96	98	99	
LCS	101	100	99	101	
LCSD	99	99	100	100	
Limits:	80-116	77-113	80-113	78-113	

Analysis Name: UST VOCs by 8260B - Water

Batch nu	mber: P122651AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6790828	94	99	103	92	
6790829	96	102	102	92	
6790830	93	99	102	94	
6790831	95	100	102	95	
6790832	95	99	101	92	
6790833	93	98	103	95	
6790834	94	99	101	98	
6790835	93	99	102	94	
6790836	97	98	102	92	
6790837	95	98	103	93	
6790838	96	99	102	92	
6790839	97	98	102	93	
6790840	95	100	102	93	
Blank	95	102	102	93	
LCS	94	96	101	95	
MS	93	99	101	96	
MSD	94	101	102	95	
Limits:	80-116	77-113	80-113	78-113	

Analysis Name: NWTPH-Gx water C7-C12

Batch number: 12264B20A Trifluorotoluene-F

6790828	69
Blank	76
LCS	91
MS	77

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: Chevron Group Number: 1336020 Reported: 09/28/12 at 01:58 PM Surrogate Quality Control MSD 85 Limits: 63-135 Analysis Name: NWTPH-Gx water C7-C12 Batch number: 12264C20A Trifluorotoluene-F 6790829 79 6790830 99 6790831 78 6790832 80 6790833 94 6790834 116 6790835 86 6790836 79 6790837 81 6790838 79 6790839 79 6790840 81 Blank 78 104 LCSD Limits: 63-135 Analysis Name: NWTPH-Dx water w/ 10g Si Gel Batch number: 122650013A Orthoterphenyl 6790829 83 Blank 92 LCS 101 LCSD 97 Limits: 50-150 Analysis Name: NWTPH-Dx water w/ 10g Si Gel Batch number: 122680008A Orthoterphenyl 6790830 80 6790831 81 6790832 78 6790833 78 6790834 80 6790835 82 6790836 80 6790837 82 6790838 79 6790839 79 Blank 82 LCS 91 LCSD 90

*- Outside of specification

50-150

Limits:

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: Chevron Group Number: 1336020

Reported: 09/28/12 at 01:58 PM

Surrogate Quality Control

Analysis Name: NWTPH-Dx water w/ 10g Si Gel

Batch number: 122680009A

Orthoterphenyl

6790840	79
Blank	78
LCS	85
LCSD	86

Limits: 50-150

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Chevron Northwest Region Analysis Request/Chain of Custody

For Lancaster Laboratories use only

412	Lancaster Laboratories
11.	Laboratories

Laboratorios				A	cct. #:	118	60	<u> </u>	Group	#	33(e)	00	<u>20</u>	es us Sam	e only ole #: (6-	19083	28-40)
1. Laboratories													estec				CR #:	<u>-</u>	
Facility #: SS#9-1122-OML G-R#386 Site Address: 568 Peace Portal Drive, E	BLAINE, WA				atrix		X		\\ 	Pr	érvat	ion (Codes				🔾 J value r	n Dry Weight eporting need	
Chevron PM: TB Lead Consultant: SAICRS Shrops Consultant/Office: G-R, Inc., 6747 Sierra Court, Suite J, Dublin, CA 94568 Consultant Prj. Mgr.: Deanna L. Harding (deanna@grinc.com)				1 1	U Potable	of Containers	8260 Naphth			Silica Gel Cleanup	☐ Method		quantification				 ☐ Must meet lowest detection limits possible for 8260 compounds ☐ 8021 MTBE Confirmation ☐ Confirm MTBE + Naphthalene 		
Consultant Phone #: 925-551-7555 Fax #: 925-551-7899					ה כ		8021			Se Se	Diss.	EPH	3					highest hit by all hits by 826	
			Soil	ter	al Number	BTEX + MTBE 80	UR 30	Oxygenates NWTPH GX	<i>S</i>	Total	О WAVPH © WA€PH	NWTPH H HCID					oxy's on high oxy's on all l		
Sample Identification	Date Collected	Time Collected	Grab	Soil	Water	Total □	BTE	8260 full s	Ž	Ž	Lead	Ŏ.	Ž			\perp			
4m).	9.1312	0930	X X		X K	8	_		, Y	K				 		∃'	Commen	ts /Remari	(S
my.2		1166	X		K		X		X X					_		_	Please forward the lab results directly to the Lead Consultant and cc: G-R.		
9.6m 		1015 1420 1100	K K		K	8	1	\Box	Ý	A			-	+					
mw.7		125	X Y		X X	3	X Y		X	X				-		1			
MW-ST MW-BT		17000 17600	l K		X	8	X X		X	X						4			
MW-97	1	1720	K K		X	9	X		X	X				-					
Turnaround Time Requested (TAT) (please cir	•	Relinquis	shed by:	9	4	7			Date 9- F4	l H	Time	R	eceiye	d by:				Date	Time
STD. TAT 72 hour 48 hou 24 hour 4 day 5 day		Relinquis	shed by:	K		\int			Date 9.M	12/	Time 4 <i>0</i> 2	S R	eceive	d by:		\		Date	Time
Data Package Options (please circle if required)	EDF/ED	Relinquis	shed by:	1					Date		Time	_	eceive	d by:				Date	Time
Tyne VI (Raw Data)				dEx							\perp	Received by: Custody Seals Intact? Yes No				•	Time		
		Tempera	iture Up	on Rec	eipt_	1.0	<u>>, /</u> (<u>ن</u> *				l c	ustody	Seals	Intact	? (Yes	No	

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weightBasis
Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Facility/Site: H St Waste Gasoline 78546495

Also known as:

Address

314 H ST

BLAINE WA 98230

Decimal Coordinates

Latitude: 48.99383

Longitude: -122.75101

Geographic Information

Ecology Region: NWRO Legislative District: 42 WRIA: 1

County: Whatcom Congressional District: 1 Tribal Land: No

Ecology Interactions

Interaction Description	Ecology Program	Ecology Program Phone	Program ID	Start Date	End Date
Hazardous Waste Generator	HAZWASTE	(360) 407-6023	WAD988507588	6/22/1992	12/31/1992

Industrial Codes (External Links Below)

No NAICS information is available for this facility site.

SIC Code	SIC Description
9999	NONCLASSIFIABLE ESTABLISHMENTS

Facility/Site: ONeil Property 21797146

Also known as: ONeil Property

Address

625 PEACE PORTAL DR BLAINE WA 98230-4012

Decimal Coordinates

Latitude: 48.99495 Longitude: -122.75223

Geographic Information

Ecology Region: NWRO Legislative District: 42 WRIA: 1

County: Whatcom Congressional District: 1 Tribal Land: No

Ecology Interactions

Interaction Description	Ecology Program	Ecology Program Phone	Program ID	Start Date	End Date
State Cleanup Site	TOXICS	(360) 407-7224		6/8/2001	

Industrial Codes (External Links Below)

No NAICS information is available for this facility site.

No SIC information is available for this facility site.

Cleanup Site Details

WHATCOM COUNTY

SITE I

ONeil Property CleanupSite ID: 4044 FS ID: 21797146

Alternate Name(s): ONeil Property

LOCATION: View Vicinity Map

Address: 625 PEACE PORTAL DR Lat/Long: 48.99495 -122.75223 Legislative District: 42

BLAINE 98230-4012 Township/Range/Section: 41N 1W 36 Congressional District: 1

STATUS: View Site Web Page

Ecology Status: Awaiting Cleanup Responsible Unit: Northwest Is Brownfield? UST Site ID:

WARM BIN#: 3 Site Manager: Musa, Donna Environmental Covenant? WRIA ID: 1

Statute: MTCA Is PSI Site? Yes

NFA Received? NFA Date: NFA Reason:

ASSOCIATED CLEANUP UNIT(s)

culD	Cleanup Unit Name	Unit Type	Process Type	Unit Status	Size (Acres)	ERTS ID
3488	ONeil Property	Upland	No Process	Awaiting Cleanup		518666

SITE ACTIVITIES:

Applies to:	Related ID (Unit-LUST-VCP)	Activity Display Name	Status	Start Date	End Date	Legal Mechanism	Performed By	Project Manager
CleanupSite		Initial Investigation / Federal Preliminary Assessment	Completed	6/14/2001	6/14/2001		Ecology	Bremer, Steve
CleanupSite		Early Notice Letter(s)			7/17/2001			Bremer, Steve
CleanupSite		Site Hazard Assessment/Federal Site Inspection	Completed	10/1/2002	10/1/2002		Local Government	County Health-NW
CleanupSite		Hazardous Sites Listing/NPL			8/17/2006			Northwest Region

AFFECTED MEDIA & CONTAMINANTS:

Media:

Contaminant:	Ground Water	Surface Water	Soil	Sediment	Air	Bedrock
Metals Priority Pollutants	S		S			

DEPARTMENT OF ECOLOGY State of Washington	Cleanup Site Details					
	Petroleum Products-Unspecified	С	С			
	Key: B - Below Cleanup Level C - Confirmed Above Cleanup Level S - Suspected	R - Remediated RA - Remediate RB - Remediate	ed-Above			

9.4	HISTORICAL RESEARCH DOCUMENTATION

Blaine, WA 277 G Street Blaine, WA 98230

Inquiry Number: 4127362.9

November 06, 2014

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2014 by Environmental Data Resources, Inc., All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Date EDR Searched Historical Sources:

Aerial Photography November 06, 2014


Target Property:

277 G Street

Blaine, WA 98230

<u>Year</u>	<u>Scale</u>	<u>Details</u>	<u>Source</u>
1980	Aerial Photograph. Scale: 1"=500'	Flight Date: January 01, 1980	USGS
1989	Aerial Photograph. Scale: 1"=500'	Flight Date: April 29, 1989	EDR
1990	Aerial Photograph. Scale: 1"=500'	Flight Date: January 01, 1990	USGS
1998	Aerial Photograph. Scale: 1"=500'	DOQQ - acquisition dates: July 21, 1998	USGS/DOQQ
2005	Aerial Photograph. Scale: 1"=500'	Flight Year: 2005	USDA/NAIP
2006	Aerial Photograph. Scale: 1"=500'	Flight Year: 2006	USDA/NAIP
2009	Aerial Photograph. Scale: 1"=500'	Flight Year: 2009	USDA/NAIP
2011	Aerial Photograph. Scale: 1"=500'	Flight Year: 2011	USDA/NAIP

